Unit III
 Dynamic Programming and Greedy Technique

- Dynamic Programming
- Computing a Binomial Coefficient
- Warshall's algorithm
- Floyd's algorithm
- Optimal Binary Search Trees
- Knapsack Problem and Memory functions

Dynamic Programming

- Dynamic programming - pblm \rightarrow similar sub problems \rightarrow reuse the solution
- Characteristics
- Overlapping sub problems - solving same sub problems
- Optimal substructure property - optimal solution can be built from sub problem
- Example : Fibonacci series

Dynamic Programming

- Methodology
- Top-down with memoization
- Storing the result of already solved sub-problem is called memoization
- Bottom-up with Tabulation
- Sub-problems (bottom - up)

Difference between Divide and conquer and Dynamic Programming

Divide and conquer	Dynamic Programming
Sub problems are not dependent on each other	Sub problems are dependent on each other
Doesn't store the solution of sub- problem	Stores the solution of sub problem

Computing a Binomial Coefficient

- Binomial coefficient - computation of no of ways r items that can be chosen from n elements $C\left({ }_{r}{ }_{r}\right)$
- $\mathrm{C}(\mathrm{n}, \mathrm{k})=\mathrm{n}$! / ($\mathrm{n}-\mathrm{k}$) ! * k !
- $\mathrm{C}(\mathrm{n}, \mathrm{k})=\mathrm{C}(\mathrm{n}-1, \mathrm{k}-1)+\mathrm{C}(\mathrm{n}-1, \mathrm{k}), \mathrm{n}>\mathrm{k}, \mathrm{k}>0$
- $\mathrm{C}(\mathrm{n}, 0)=1, \mathrm{C}(\mathrm{n}, \mathrm{n})=1$
- Example:
- $1^{\text {st }}$ formula $: \mathrm{C}(4,2) \rightarrow 4$! $/(2!) * 2$! $\rightarrow 24 / 4 \rightarrow 6$
- $2^{\text {nd }}$ formula : $\mathrm{C}(4,2) \rightarrow \mathrm{C}(3,1)+\mathrm{C}(3,2) \rightarrow \ldots . . \rightarrow 6$
- $\mathrm{C}(4,2) \rightarrow$ how many two combinations of elements can be picked from set of 4 elements
- Example: possibilities of $1,2,3,4 \rightarrow(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)$

Computing a Binomial Coefficient

- Example : C $(5,2)$
- $\mathrm{C}(\mathrm{n}, \mathrm{k})=\mathrm{C}(\mathrm{n}-1, \mathrm{k}-1)+\mathrm{C}(\mathrm{n}-1, \mathrm{k}), \mathrm{n}>\mathrm{k}, \mathrm{k}>0$
- $\mathrm{C}(\mathrm{n}, 0)=1, \mathrm{C}(\mathrm{n}, \mathrm{n})=1$

Computing a Binomial Coefficient - Tabulation

Computing a Binomial Coefficient - Algorithm

Algorithm Binomial(n, k)
for $i \leftarrow 0$ to n do // fill out the table row wise for $i=0$ to $\min (i, k)$ do if $j==0$ or $j==i$ then $C[i, j] \leftarrow 1 / /$ IC else $C[i, j] \leftarrow C[i-1, j-1]+C[i-1, j] / /$ recursive relation
return $C[n, k]$

Computing a Binomial Coefficient - Analysis

- Cost of the algorithm - table
- Sum - 2 parts (upper and lower triangle)
- $A(n, k)=$ sum for upper triangle + sum for the lower rectangle

Computing a Binomial Coefficient - Analysis
$\Rightarrow \frac{\frac{k^{2}+k}{2}-k+k[n-k-x+x]}{2}$
$\Rightarrow \frac{k^{2}+k-2 k+2\left(n k-k^{2}\right)}{2}$
$\Rightarrow \frac{k^{2}-k+2 n k-2 k^{2}}{2}$
$\Rightarrow \frac{-k^{2}-k+2 n k}{2}$
$\approx 0(n k)$

