

Unit III – Dynamic Programming

- Dynamic Programming
 - Computing a Binomial Coefficient
 - Warshall's algorithm
 - Floyd's algorithm
 - Optimal Binary Search Trees
 - Knapsack Problem and Memory functions

Floyd's algorithm

- Weighted connected graph all pair shortest path
- Algorithm

```
ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem

//Input: The weight matrix W of a graph with no negative-length cycle

//Output: The distance matrix of the shortest paths' lengths

D \leftarrow W //is not necessary if W can be overwritten

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

D[i, j] \leftarrow \min[D[i, j], D[i, k] + D[k, j]]

return D
```

• Time Complexity $- O(n^3)$

Optimal Binary Search Tree

Cost Matrix C[i,i-1] = 0 C[i,i] = 0C[i,j] = formula Root Matrix R[i, i] = iR[i, j] = k (min)

	0	1	2	3	4		0	1	2	3	4
1	0	0.1	0.4	1.1	1.7	1		1	2	3	3
2		0	0.2	0.8	1.4	2			2	3	3
3			0	0.4	1.0	3				3	3
4				0	0.3	4					4
5					0	5					

Design and Analysis of Algorithm -

A.Indhuja

Optimal Binary Search Tree

A.Indhuja