

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35

Limitations of Algorithm, Lower Bound Arguments

Limitations of Algorithm

- Algorithm?
- Three Things about an Algorithm?
 - Some Problems have no algorithm No Solution
 - Some Problems can be solved in Non Polynomial Time
 - Some Problems can solved in Polynomial Time
- Three bounds of an Algorithms?
 - Lower bound: Minimum amount of time taken by an algorithm to solve problem
 - Upper bound: Maximum amount of time required by an algorithm to solve problem
 - Tight bound: Time taken by an algorithm same as the efficiency class.

Lower Bound Arguments

- Lower bound can be
 - an exact count
 - an efficiency class (Ω)
- <u>Tight</u> lower bound: there exists an algorithm with the same efficiency as the lower bound

Problem	Lower bound	Tightness
sorting (comparison-based)	$\Omega(n\log n)$	yes
searching in a sorted array	$\Omega(\log n)$	yes
element uniqueness	$\Omega(n\log n)$	yes
n-digit integer multiplication	$\Omega(n)$	unknown
multiplication of <i>n</i> -by- <i>n</i> matrices	$\Omega(n^2)$	unknown

Four types of Obtaining Algorithm Lower Bound

 Trivial Lower Bound: based on counting no of inputs are given and counting number of outputs are generated.

Ex: Matrix Multiplication: inputs: 2*n2 and output:n2

2. Information Theoretical Arguments: based on comparison model.

Ex: Guessing a number with in the range

- 3. Adversary Arguments: for the legitimate input an algorithm takes long run to give results. Ex: Eating: Last person completion time is the result.
- **4. Reduction**: P is Hard Problem, Q is Known Problem has an algorithm. So All the instance of Q is transferred to P. (reduction). If the Problem P is deduced to Q so that Q has the result then P has also result.