

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35

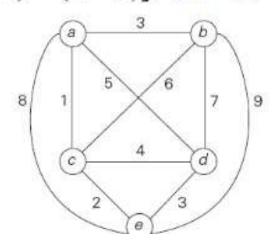
• The **Traveling Salesman Problem** (TSP) is to find the **shortest** tour through a given set of *n* cities that visits each city exactly once before returning to the city where it started.

- The problem can be modeled by a weighted graph, with the graph's vertices representing the cities and the edge weights specifying the distances.
- Then the TSP problem can be stated as the problem of finding the shortest *Hamiltonian circuit* of the graph.
- A Hamiltonian circuit is defined as a cycle that passes through all the vertices of the graph exactly once.

• For each city i, $1 \le i \le n$, find the sum s_i of the distances from city i to the two nearest cities; compute the sum s of these n numbers; divide the result by $2(lb = \lceil s/2 \rceil)$.

Example:

$$1b = \lceil [(1+3) + (3+6) + (1+2) + (3+4) + (2+3)] / 2 \rceil = 14$$

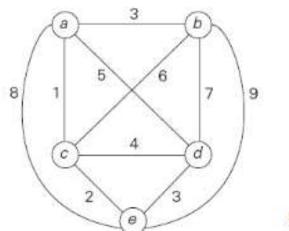


53

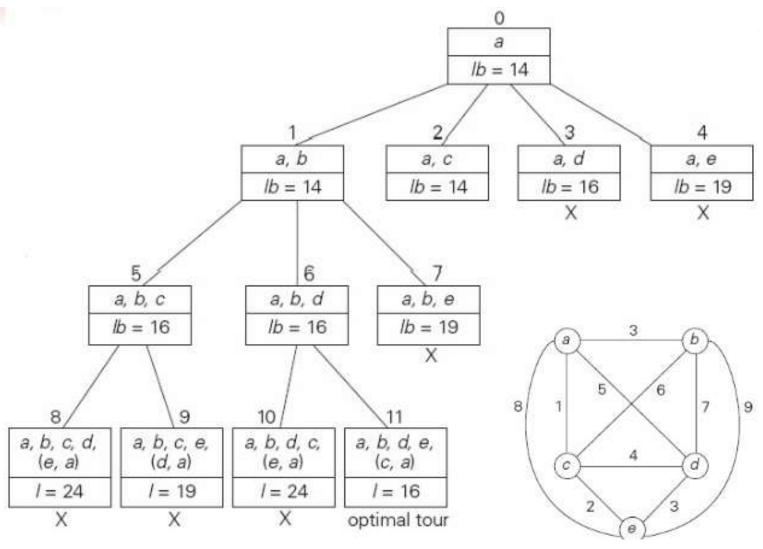
• If we know that a subset of a tour that must include a particular edge of a given graph, we update the lower bound by modifying the sums s_i 's incident to two vertices of the edge.

• For example, if a Hamiltonian circuit of the graph in Figure 12.9a that must include edge (a, d), we update the lower bound by modifying the sums s_1 and s_4 because these sums are incident to two vertices a and d:

$$\lceil [(1+5)+(3+6)+(1+2)+(3+5)+(2+3)]/2 \rceil = 16$$



- 5



Node 0:
$$lb = \lceil [(1+3) + (3+6) + (1+2) + (3+4) + (2+3) \rceil / 2 \rceil = \lceil 28/2 \rceil = 14.$$

Node 1:
$$lb = \lceil (1+3) + (3+6) + (1+2) + (3+4) + (2+3) \rceil / 2 \rceil = \lceil 28/2 \rceil = 14.$$

Node 2:
$$lb = \lceil (1+3) + (3+6) + (1+2) + (3+4) + (2+3) \rceil / 2 \rceil = \lceil 28/2 \rceil = 14.$$

Node 3:
$$lb = \lceil (1+5) + (3+6) + (1+2) + (3+5) + (2+3) \rceil / 2 \rceil = \lceil 31/2 \rceil = 16. \times$$

Node 4:
$$lb = \lceil (1+3) + (3+6) + (1+2) + (3+4) + (2+3) \rceil / 2 \rceil = \lceil 38/2 \rceil = 19. \times$$

Node 5:
$$lb = \lceil (1+3) + (3+6) + (1+6) + (3+4) + (2+3) \rceil / 2 \rceil = \lceil 32/2 \rceil = 16.$$

Node 6:
$$lb = \lceil (1+3) + (3+7) + (1+2) + (3+7) + (2+3) \rceil / 2 \rceil = \lceil 32/2 \rceil = 16.$$

Node 7:
$$lb = \lceil (1+3) + (3+9) + (1+2) + (3+4) + (2+9) \rceil / 2 \rceil = \lceil 37/2 \rceil = 19. \times$$

//Leaf nodes

Node 8:
$$l = 3 + 6 + 4 + 3 + 8 = 24$$
.

Node 9:
$$l = 3 + 6 + 2 + 3 + 5 = 19$$
.

Node 10:
$$l = 3 + 7 + 4 + 2 + 8 = 24$$
.

Node 11:
$$l = 3 + 7 + 3 + 2 + 1 = 16$$
.

Solution: tour = (a, b, d, e, c, a), tour length = 16