Line and circle drawing
algorithms

Unit-2 - Graphics Primitives

In above equation k takes integer values starting from 1 and increase by 1 until the final endpoint isreached.
As m can be any real number between 0 and 1, the calculated y values must be rounded to the nearest integer.
Consider a case for a line with a positive slope greater than 1:

We change the role of x and y that is sample at unit y intervals (Ay = 1) and calculate each succeeding

x value as:

x= (y=b)/m

x1= ((y + 1)=b)/m

Ingeneralx, = ((y + k) —b)/m, &

e = (v + k +) —b)/m

Now write this equation in form:

X — 1 = (0 + k + D=b)y/m)- (U + k) —b)/m)

Xiew1 = X + 1/m

Above both equations are based on the assumption that lines are to be processed from left endpoint to

the right endpoint.

If we processed line from right endpoint to left endpoint than: If Ax = —1 equation become:
Y41 = Y- M

If Ay = —1 equation become:

Xip1 = X — 1/m

Above calculated equations also used to calculate pixel position along a line with negative slope.
Procedure for DDA line algorithm.
Void lineDDA (int xa, int ya, int xb, int yb)
{
int dx = xb — xa, dy = yb — ya, steps, k;

float xincrement, yincrement, x = xa, y = ya; if (abs(dx)>abs(dy))

{

Steps = abs (dx);
}
else
{

Steps = abs (dy);
}

xincrement = dx/(float) steps; yincrement = dy/(float) steps;

setpixel (ROUND (x), ROUND (y)); for(k=0;k<steps;k++)
{

X += xincrement; y += yincrement;

setpixel (ROUND (x), ROUND (y));

Advantages of DDA algorithm

e ltis faster algorithm.

e ltis simple algorithm.

Disadvantage of DDA algorithm

¢ Floating point arithmetic is time consuming.

e Poor end point accuracy.

Bresenham’s Line Algorithm

L4 An acedrgt ¢ I ffret
pec

incrdtnent

#pm-developed-by-Bt

Unit-2 - Graphics Primitives

b
b

P

isplay circles an

[’
4
9

HeuSs

pecifie ne

lpath

\

e Figu¥é shows secfi dcreen Wwhere sfraight l|ne segments4te tq be drg
8
1° 4

7

10

11

Fig. 2.4: - Section of a display screen where a straight
line segment is to be plotted, starting from the pixel at
column 10 on scan line 11.

e Sampling at unit x intervals in these examples, we need to decide which of two possible pixel position is closer to the line
path at each sample step.

e To illustrate bresenham’s approach, we first consider the scan-conversion process for lines with positive slope less than 1.

12

13

14

15

50

51

52

53

54

pixel at column 50 on scan line 50.
e The vertical axes show scan-line positions and the horizontal axes identify pixel column.

e Pixel positions along a line path are then determined by sampling at unit x intervals.

values is closest to the line path.

Assuming we have determined that the pixel at (x, y«) is to be displayed, we next need to decide which pixel to plot in

column x; + 1.

® Our choices are the pixels at positions (xx + 1,yx) and (xx + 1,y + 1).

e Let’s see mathematical calculation used to decide which pixel position is light up.

y=mx + b

We know that equation of line is:

55

Fig. 2.5: - Section of a display screen where a negative
slope line segment is to be plotted, starting from the

Starting from left endpoint (xo, yo) of a given line, we step to each successive column and plot the pixel whose scan-line y

MNOW=FOr=POoH:
PNrf =i

A= Mmlv, 4+ 1) L

h

b

Unit-2 - Graphics Primitives

A1 = M(Xk + 1) F D = Yk et bbb
do= O+ 1)-y
dy = (yk+1)—mx +1) = b

Now calculate di — d, from equation (1) and (2).

di—d= (- y)- (O +1)-)

di—dy, ={m@xc+1)+b—y}—{+1)—mle + 1) — b}
di—dy={mxix +m+b—-—y}—{yx+1—mxy, —m — b}

di —dy = 2m(x, + 1) — 2y + 2b — 1...... (3)

Now substitute m = Ay/Ax in equation (3)

di—dy =2 +1) = 2yx +2b -1 (4)
Ax

Now we have decision parameter p; for kth step in the line algorithm is given by:

pr = Ax(di — do)

pr = Ax(2Ay/Ax(xx + 1) - 2y, + 2b- 1)

pr = 20yxi + 24y — 2Axy, + 2Axb — Ax

P = 28yxi — 20xyr + 20y + 2Axb — Ax (5)

pr = 20yxi — 2Axy. + C (Where Constant C = 2Ay + 2Axb — AX).coovivciicciiicicii (6)

The sign of py is the same as the sign of d; — d,, since Ax > 0 for our example.

Parameter c is constant which is independent of pixel position and will eliminate in the recursive calculation for py.

Now if px is negative then we plot the lower pixel otherwise we plot the upper pixel.

So successive decision parameters using incremental integer calculation as:
Pit1 = 28YXi1 — 28xYi1 + C

Now Subtract pk from prs1

Vi)

Pi+1 — Pk = 2Ayxpe1 — 2Axyre1 + C — 2Ayxi + 2Axy, — C

But xx+1 = xx + 1, so that (xks1 — x) = 1

Pir1 — P = 28y (X1 — x1) -28x(Yie1 —

Pir1 = P + 28y — 28x(Yis1 — Y1)
Where the terms yi+1 — yi is either 0 or 1, depends on the sign of parameter py.

This recursive calculation of decision parameters is performed at each integer

x position starting at the left coordinate endpoint of the line.

The first decision parameter po is calculated using equation (5) as first time we need to take constantpart into account so:

Dk 20yxy — 2Mxyr + 2Ay + 2Axb — Ax
Po 2Ayxy — 2Axy, + 2Ay + 2Axb — Ax
Now Substitute b =

Yo — mMXp
po = 2Ayxo — 2Axy, + 2Ay + 2Ax(yo — mxo) — Ax
Ay/Ax

Now Substitute m

po = 20yxo — 2Axyo + 20y + 2Ax(yo — (Ay/Ax)x0) — Ax

po = 2Ayxo — 2Axyo + 24y + 2Axy, — 2Ayxo — Ax

po = 2Ay — Ax

Let’s see Bresenham'’s line drawing algorithm for |m| < 1

1. Inputthe two line endpoints and store the left endpoint in (xo, ¥o).

2. Load (xo, yo) into the frame buffer; that is, plot the first point.

3. Calculate constants Ax, Ay, 2Ay, and 2Ay — 2Ax, and obtain the starting value for the decision

parameter as

Unit-2 - Graphics Primitives

po = 24y — Ax
4. At each x; along the line, starting at k = 0, perform the following test:
If pr < 0, the next point to plotis (xx + 1,y) and
Pra1 = pr + 28y
Otherwise, the next point to plot is (xx + 1,yx + 1) and
Pre1 = P + 24y — 2Ax

5. Repeat step-4 Ax times.
. Bresenham’s algorithm is generalized to lines with arbitrary slope by considering symmetry between the various octants and quadrants of the xy plane.
. For lines with positive slope greater than 1 we interchange the roles of the x and y directions.
. Also we can revise algorithm to draw line from right endpoint to left endpoint, both x and y decrease as we step from right to left.
. When d; — d, = 0 we choose either lower or upper pixel but once we choose lower than for all such case for that line choose lower and if we choose upper the for all such

case choose upper.
. For the negative slope the procedure are similar except that now one coordinate decreases as the other increases.
. The special case handle separately. Horizontal line (Ay = 0), vertical line (Ax = 0) and diagonal line with |Ax| = |Ay| each can be loaded directly into the frame

buffer without processing them throughthe line plotting algorithm.
Parallel Execution of Line Algorithms
. The line-generating algorithms we have discussed so far determine pixel positions sequentially.
. With parallel computer we can calculate pixel position along a line path simultaneously by dividing work among the various processors available.
. One way to use multiple processors is partitioning existing sequential algorithm into small parts and compute separately.
. Alternatively we can go for other ways to setup the processing so that pixel positions can be calculated efficiently in parallel.
. Important point to be taking into account while devising parallel algorithm is to balance the load amongthe available processors.
L] Given n, number of processors we can set up parallel Bresenham line algorithm by subdividing the line path into n, partitions and simultaneously generating line segment in each of

the subintervals.
. For a line with slope 0 <m < 1 and left endpoint coordinate position (xo,y0), we partition the line along the positive x direction.
. The distance between beginning x positions of adjacent partitions can be calculated as:
Ax, = (Ax+n, — D/,
Were Ax is the width of the line. And value for partition with Ax, is computed using integer division.
Numbering the partitions and the processors, as 0,1,2, up to mp, —1, we calculate the starting x
coordinate for the kth partition as:

Xk = xo + kiAx,
. To apply Bresenham's algorithm over the partitions, we need the initial value for the y coordinate and the initial value for the decision parameter in each partition.
. The change Ay, in the y direction over each partition is calculated from the line slope m and partitionwidth Ax;:

o Ay, = mhy

Unit-2 - Graphics Primitives

At the kth partition, the starting y coordinate is then
Yk = Yo + round(kAy,)
The initial decision parameter for Bresenham's algorithm at the start of the kth subinterval is obtained from Equation(6):
pr = 20yx; — 2Axy, + 24y + 2Axb — Ax
p =20y(x +kAx)—2Mx(y +round(khAy)) +2Ay + 20x(y _ A}’x) —Ax
k 0 » 0 P 0 Ax ©
pr = 20yxo — 2AykAx, — 2Axy, — 2Axround(kAy,) + 2Ay + 2Axy, — 2Ayx, — Ax
pr = 28ykAx, — 2Axround(kAy,) + 24y — Ax
Each processor then calculates pixel positions over its assigned subinterval.

The extension of the parallel Bresenham algorithm to a line with slope greater than 1 is achieved by partitioning the line in the y direction and calculating beginning x
values for the positions.

For negative slopes, we increment coordinate values in one direction and Hecrement in the other.

Y2

R by l

AVZ1 ! |

X1 X2

Fig. 2.6: - Bounding box for a line with coordinate extents Ax and Ay.
Another way to set up parallel algorithms on raster system is to assign each processor to a particulargroup of screen pixels.
With sufficient number of processor we can assign each processor to one pixel within some screen region.
This approach can be adapted to line display by assigning one processor to each of the pixels within the limit of the bounding rectangle and calculating pixel distance from the
line path.
The number of pixels within the bounding rectangle of a line is Ax X Ay.
Perpendicular distance d from line to a particular pixel is calculated by:
d= Ax + By +C
Where
A = —Ay/linelength
B = —Ax/linelength
C = (x0Ay — yoAx)/linelength————————
With

linelength = VAx2 + Ay?

Once the constant 4,B, and C have been evaluated for the line each processors need to perform two
multiplications and two additions to compute the pixel distance d.

A pixel is plotted if d is less than a specified line thickness parameter.

Instead of partitioning the screen into single pixels, we can assign to each processor either a scan line ora column a column of pixels depending on the line slope.

Unit-2 - Graphics Primitives

. Each processor calculates line intersection with horizontal row or vertical column of pixels assigned to that processor.
. If vertical column is assign to processor then x is fix and it will calculate y and similarly is horizontal row is assign to processor then y is fix and x will be calculated.
. Such direct methods are slow in sequential machine but we can perform very efficiently using multiple processors.
Circle
VN
r
Yc

N /

| -

Xcl

Fig. 2.7: - Circle with center coordinates (x.,y.) and radius 7.
(] A circle is defined as the set of points that are all at a given distance r from a center position say (x, yc).

Properties of Circle

. The distance relationship is expressed by the Pythagorean theorem in Cartesian coordinates as:
(x—x)2+ (y—y)r =12

. We could use this equation to calculate circular boundary points by incrementing 1 in x direction in

every steps from x. - 7 to x. + 7 and calculate corresponding y values at each position as:
(=x)2+ (P —y)r =12 (y—yJ)? =12 - (x —x)?

=y =+Vr2 — (2. — D2

y=yetVr? - (x — 22

. But this is not best method for generating a circle because it requires more number of calculations which take more time to execute.
. And also spacing between the plotted pixel positions is not uniform as shown in figure below.
.——_——_—___
.~’-‘-_ --'5\

Fig. 2.8: - Positive nan ur uiue SHUWIIIE U UTHITUTTT SPdUllg UEL LdituldLleu pixel positions.

Unit-2 - Graphics Primitives

We can adjust spacing by stepping through y values and calculating x values whenever the absolute value of the slop of the circle is greater than 1. But it will increases
computation processing requirement.

Another way to eliminate the non-uniform spacing is to draw circle using polar coordinates ‘v’ and 0 .

Calculating circle boundary using polar equation is given by pair of equations which is as follows.

X = xc+ rcosB

y = Y.+ rsin®

When display is produce using these equations using fixed angular step size circle is plotted with uniform spacing.

The step size ‘D ’ is chosen according to application and display device.

For a more continuous boundary on a raster display we can set the step size at 1/r. This plot pixel position that are approximately one unit apart.

Computation can be reduced by considering symmetry city property of circles. The shape of circle issimilar in each quadrant.

We can obtain pixel position in second quadrant from first quadrant using reflection about y axis and similarly for third and fourth quadrant from second and first
respectively using reflection about x axis.

We can take one step further and note that there is also symmetry between octants. Circle sections in adjacent octant within one quadrant are symmetric with respect
to the 459 line dividing the two octants.

This symmetry condition is shown in figure below where point (x, y) on one circle sector is mapped in other seven sector of circle.

(-Y, X) (Y, X)
450
V' N
(-X,Y) X, Y)
(-X, -Y) (X, -Y)
(Y, = 7X)
Fig. 2.9: - symmetry of circle.

Taking advantage of this symmetry property of circle we can generate all pixel position on boundary of circle by calculating only one sector from x = 0 to x = y.
Determining pixel position along circumference of circle using any of two equations shown above stillrequired large computation.

More efficient circle algorithm are based on incremental calculation of decision parameters, as in the Bresenham line algorithm.

Bresenham'’s line algorithm can be adapted to circle generation by setting decision parameter for findingclosest pixel to the circumference at each sampling step.
The Cartesian coordinate circle equation is nonlinear so that square root evaluations would be requiredto compute pixel distance from circular path.

Bresenham’s circle algorithm avoids these square root calculation by comparing the square of the pixel separation distance.

Unit-2 - Graphics Primitives

A method for direct distance comparison to test the midpoint between two pixels to determine if this midpoint is inside or outside the circle boundary.
This method is easily applied to other conics also.

Midpoint approach generates same pixel position as generated by bresenham’s circle algorithm.
The error involve in locating pixel positions along any conic section using midpoint test is limited to one- half the pixel separation.

Midpoint Circle Algorithm

Similar to raster line algorithm we sample at unit interval and determine the closest pixel position to the specified circle path at each step.
Given radius ‘r’ and center (x, y.)

We first setup our algorithm to calculate circular path coordinates for center (0, 0). And then we will transfer calculated pixel position to center (x.y.) by adding x, to x and

Yy to y.
Along the circle section from x = 0to x = y in the first quadrant, the slope of the curve varies from 0
to -1 so we can step unit step in positive x direction over this octant and use a decision parameter to determine which of the two possible y position is closer to the
circular path.
Position in the other seven octants are then obtain by symmetry.
For the decision parameter we use the circle function which is:
feiree(x, y) = x2 + y2 — 12
Any point which is on the boundary is satisfied ferae(X, y) = 0 if the point is inside circle function valueis negative and if point is outside circle the function value is positive which
can be summarize as below.
<0 if (x,y)is inside the circle boundary
feirce(x, y){ = 0 if (x,y)is on the circle boundary
>0 if (x,y)is outside the circle boundary
Above equation we calculate for the mid positions between pixels near the circular path at each sampling step and we setup incremental calculation for this function
as we did in the line algorithm.

Below figure shows the midpoint between the two candidate pixels at sampling position x; + 1.
- x2 + yz —1r2=0

n SR e

ye—1

Xk xik +1 xc+2

Fig. 2.10: - Midpoint between candidate pixel at sampling position x, + 1 along circle path.
Assuming we have just plotted the pixel at (xx, yx) and next we need to determine whether the pixel at position ‘(xx + 1, yx)’ or the one at position’ (xx + 1, yx — 1)’ is closer to
circle boundary.

So for finding which pixel is more closer using decision parameter evaluated at the midpoint betweentwo candidate pixels as below:

Pr = ferce (X + 1,y — 1)
_ 2
2
() 12
k +—) —r
2
If px < 0 this midpoint is inside the circle and the pixel on the scan line y; is closer to circle boundary.

Otherwise the midpoint is outside or on the boundary and we select the scan line y; — 1.

Successive decision_parameters are obtain using incremental calculations as follows:

Unit-2 - Graphics Primitives

1
P =f (x +1y -9 _
k+1 circle k+1 k+1 2
P =[x +D+ 12+ §¢ 12 _r
k1=)
k+1 k
2
Now we can obtain recursive calculation usin,g equation of prs1and py as follow. —
p -» = ([(x +1D+1]2+¢ 1 2 ()2 12 2
let1 k k 1=) —r)—(x+1 + k=) —1)
2 2

Pert =D = e+ 12+ 200+ D+ 1+ yu2 =Y +1 =712 — (e + 12 =y + yi — 14 12
4 4

Dik+1 — Dk 20k + 1)+ 1+ Yier? — Yier — Y2 + Vi

Prat — D = 20 + D)+ (Ve — YD) — irr — y) + 1

Prrr = Pr+ 200+ D)+ i =¥k) = Wirn — yi) + 1 ,

In above equation yi41 is either y, or yx — 1 depending on the sign of the p;.

Now we can put 2xx+1 = 2x, + 2 and when we select yis1 = yr — 1 we can obtain 2y = 2y, — 2.

The initial decision parameter is obtained by evaluating the circle function at the start position
(x0,y0) = (0,7) as follows.

Po = ferce (0+ 1,7 — 1)
2 1 2 2

p=1+0-,) —r

pp=1+12—r+1-12

Do= 5—r
4

Algorithm for Midpoint Circle Generation

1.

b

gl

Input radius rand circle center (x,Y.), and obtain the first point on the circumference of a circle centered on the origin as

(x0,y0) = (0,7)
calculate the initial value of the decision parameter as

Po=5—T
4
At each x; position, starting at k = 0, perform the following test:

If pr < 0, the next point along the circle centered on (0,0) is (xx + 1,yx) &

Prs1 = Pk + 2341 + 1
Otherwise, the next point along the circle is (xx + 1,yx — 1) &

Dis1 = Dk + 2Xp1 + 1 — 2y
Where 2xp:1 = 2x; + 2, & 2Yke1 = 2y — 2.

Determine symmetry points in the other seven octants.

Move each calculated pixel position (x,y) onto the circular path centered on (x.y.) and plot the coordinate values:
X=X+X,y=Y+y

Repeat steps 3 through 5 until x = y.

11

