

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECT221 – MICROPROCESSORS AND MICROCONTROLLERS

II YEAR - IV SEM

UNIT 4– INTERFACING MICROCONTROLLER

Topic-1: Serial Port Programming of 8051

Serial Port of 8051

- > The 8051 transfers and receives data serially at many different baud rates.
- Serial communications of the 8051 is established with PC through the COM port.
- > The baud rate in the 8051 is programmable. This is done with the help of Timer.
- \succ When used for serial port, the frequency of timer tick is determined by (XTAL/12)/32 and 1 bit is transmitted for each timer period (the time duration from timer start to timer expiry).

SBUF Register

TxD:

- \succ This pin basically acts as a transmitter (sending data), but in some other modes it doesn't do the job of transmitter. As it is serial communication, it sends bit by bit, the processor gives 8-bit at 1 time and those 8bits are stored in a register named **SBUF**.
- ➤ Timer T1 (here T1 only needs to trigger, T1 does not require its overflow flag, mode 3 in timers).
- \succ Here we can vary the delay, so data transmission delay can be varied (frequency can be varied). It has a variable baud rate.
- \succ There is an internal clock in 8051 (f_{osc} / 12 = 1Mhz) , where delay cannot be varied, this has fixed trigger delay. So frequency cannot be varied. It has a fixed baud rate.
- \succ Whenever SBUF transferred 8bit of data , T_i flag becomes 1. Whenever processors go to ISR(in other interrupts the flag is auto cleared whenever processor goes to ISR), in this the T_i flag is not auto cleared.

SCON Register

RxD

- This pin is basically for data reception. It received data bit by bit (as the transmitter sends LSB first, it received LSB first).
- There is also a register SBUF which stores 8 received bits. Once the 8 bits are received, instead of sending an interrupt it firstly checks for errors (errors caused due to transmission, how error is checked is discussed in upcoming tutorials).
- Once there is no error in the received information R_i flag is set and an interrupt is sent to the processor. Processor goes to ISR (here also R_i is not cleared automatically).

SCON Register

SM₀ and SM₁:

These are used to select the mode.

SM ₀	SM ₁	Mode
0	0	0
0	1	1
1	0	2
1	1	3

SM₂:

If SM₂ = 1, error is checked

Or else no error checking is done.

Г _і	R _i
----------------	----------------

SCON Register

REN:

Receiver enable, If REN=1, receiver will receive the data or else not. TB₈:

This is the 9th bit to be transmitted.

RB₈:

This is the 9th bit to be received.

T_i :

When 8-bits are received in SBUF, then $R_i = 1$, that would send an interrupt to the processor.

R_i :

When 8-bits are sent from SBUF, and SBUF is empty, then $R_i = 1$, that would send an interrupt to the processor. Before $R_i=1$, it checks for error based on SM_2 .

References

https://ebooks.inflibnet.ac.in/csp13/chapter/serial-port-programming-in-assembly/

https://roboticelectronics.in/serial-port-in-8051/

https://ebooks.inflibnet.ac.in/csp13/chapter/serial-port-programming-in-embedded-c/

Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, - The 8051 Microcontroller and Embedded Systems: Using Assembly and C, Second Edition, Pearson Education, 2011

