

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECT221 – MICROPROCESSORS AND MICROCONTROLLERS

II YEAR - IV SEM

UNIT 4– INTERFACING MICROCONTROLLER

Topic-8- Comparison of Microprocessor and Microcontroller

Microprocessor

 \succ A microprocessor is a computer processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. > The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU).

Microcontroller

 \succ A microcontroller (MC, UC, or μ C) or microcontroller unit (MCU) is a

small computer on a single integrated circuit.

A microcontroller contains one or more CPUs (processor cores) along

with memory and programmable input/output peripherals.

Comparison of Microprocessor and

Microcontroller

MICROPROCESSOR	MICRO
Center of a computer system.	Center of e
Memory and I/O components are external to it.	Memory and I/O com
Large Circuit	Sm
Not compatible with compact systems	Compatible w
Higher cost	La
High Power Consumption	Low Pow
Mostly don't have power features	Mostly have
Mainly present in personal computers.	Mainly present in wasl and emb
Less number of registers.	More nur
Follows Von Neumann model	Follows Ha
Made on a silicon-based integrated chip.	Byproduct microproc
RAM, ROM, and other peripherals are absent.	RAM, ROM, a
Has an external bus to interface with devices.	Uses an internal contro
Has a high speed.	Speed depend
Ideal for general purpose to handle more data.	Ideal for the
Complex and Expensive	Simple
Requires more instructions	Requires

ROCONTROLLER

embedded system.

nponents are internal to it.

naller Circuit

with compact systems.

ower Cost

wer Consumption

ave power features.

shing machines, music players, bedded systems.

mber of registers.

larvard architecture

cessors and peripherals.

, and other peripherals are present.

rolling bus for communication.

nds on the architecture.

specific applications.

le and affordable

s less instructions

References

https://www.geeksforgeeks.org/whats-difference-between-microcontoller-%C2%B5c-and-microprocessor-%C2%B5p/

https://www.tutorialspoint.com/difference-between-microprocessor-and-microcontroller

https://robu.in/what-is-the-difference-between-microprocessor-and-microcontroller/

Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, - The 8051 Microcontroller and Embedded Systems: Using Assembly and C, Second Edition, Pearson Education, 2011

