

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECB211 - MICROCONTROLLER PROGRAMMING & INTERFACING

II YEAR IV SEM

UNIT V- ADVANCED MICROCONTROLLERS

TOPIC 5 – ARM Architecture

- > The Arm architecture is the keystone of the world's largest compute ecosystem.
- It enables our partners to build their products in an efficient, affordable, and secure way.
- Arm's proven track record of delivering world-class architecture designs is reflected in the success of this diverse and ever-evolving ecosystem.
- Arm's architecture specifications are licensed by partners, who create compliant silicon chips based on them.
- ➤ With more than 125 billion devices containing Arm-based chips, our architecture empowers innovation in multiple markets enabling partner innovation

- The Arm architecture is a family of reduced instruction set computing (RISC) architectures for computer processors.
- ➤ It is the most pervasive processor architecture in the world, with billions of Armbased devices shipped every year, from sensors, wearables and smartphones to supercomputers.

Benefits of the Arm CPU architecture include:

- Integrated security
- High performance and energy efficiency
- > Large ecosystem for global support
- Pervasive across markets and locations

ARM Architecture

➤ The ARM cortex is a complicated microcontroller within the ARM family that has ARMv7 design. There are 3 subfamilies within the ARM cortex family:

ARM Cortex Ax-series

ARM-Cortex Rx-series

ARM-Cortex Mx-series

Which Architecture is my processor?

Data Sizes and Instruction Sets

- 1.Arm is a RISC Processor
- 2.ARM is a 32 bit load store architecture
- 3.Most internal registers are 32 bits

With relation to Arm,

Word = 32 bits

Halfword = 16 bits

Doubleword = 64 bits

4.Implements two instruction sets – Arm and Thumb Instructions

5.Older cores support 16 bit thumb instruction only.

Maintains code density with increased feasibility.

Processor Modes - A and R

Processor mode		Description	
User	usr	Normal program execution mode	
FIQ	fiq	Supports a high-speed data transfer or channel process	
IRQ	irq	Used for general-purpose interrupt handling	
Supervisor	svc	A protected mode for the operating system	
Abort	abt	Implements virtual memory and/or memory protection	
Undefined	und	Supports software emulation of hardware coprocessor	
System	sys	Runs privileged operating system tasks	

Processor Modes - Cortex M

ARM Register Set - A and R

ARM Register Set - A and R

ARM PROGRAM STATUS REGISTER

ARM EXCEPTIONS

Exception type	Mode	Normal address	High vector address
Reset	Supervisor	0x00000000	0xFFFF0000
Undefined instructions	Undefined	0x00000004	0xFFFF0004
Software interrupt (SWI)	Supervisor	0x00000008	0xFFFF0008
Prefetch Abort (instruction fetch memory abort)	Abort	0x000000C	0xFFFF000C
Data Abort (data access memory abort)	Abort	0x00000010	0xFFFF0010
IRQ (interrupt)	IRQ	0x00000018	0xFFFF0018
FIQ (fast interrupt)	FIQ	0x0000001C	0xFFFF001C

The ARM Architecture

- ➤ Arithmetic Logic Unit
- > Booth multiplier
- Barrel shifter
- > Control unit
- Register file

Arithmetic Logic Unit (ALU)

The ALU has two 32-bits inputs.

The primary comes from the register file, whereas the other comes from the shifter. Status registers flags modified by the ALU outputs.

References

https://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_02.pdf

https://unacademy.com/lesson/architecture-of-msp430-microcontroller/B3AQZF86

https://binaryupdates.com/bitwise-operations-in-embedded-programming/

John H Davies, MSP430 Microcontroller Basics, Newnes Publications, Elsevier, 2008.

