
Chapter 7
2D Geometric Transformations

Computer Graphics

Chapter 7
Two-Dimensional Geometric
Transformations

2

Part III.
• OpenGL Functions for Two-Dimensional Geometric Transformations

• OpenGL Geometric Transformation Programming Examples

OpenGL Geometric Transformation Functions

 Be careful of manipulating the matrix in OpenGL
 OpenGL uses 4X4 matrix for transformation.
 The 16 elements are stored as 1D in column-major order

 C and C++ store matrices in row-major order
 If you declare a matrix to be used in OpenGL as

GLfloat M[4][4]; to access the element in row i and column j, you
need to refer to it by M[j][i]; or, as
GLfloat M[16]; and then you need to convert it to conventional row-
major order.

OpenGL transform matrix

3

OpenGL Transformations

 Three types
 Modeling, Viewing and Projection

4 (From OpenGL Super Bible)

Standard 2D Viewing Pipeline

MC (Local Coor.)

Normalization
Transformation

Modeling
Transformation

WC VC

NC

DC

Viewing
Transformation

 To make the viewing process
independent of any output device,
viewing coordinates is converted
to normalized coordinates.

 Clipping is usually performed in
normalized coordinates.

5

Modeling Transformations

 Modeling transformations: to manipulate/create your
model and the particular objects within it.
 Move objects into place, rotates them, and scales them, etc.
 The final appearance of your scene or object can depend greatly

on the order in which the modeling transformations are
applied.

6

Viewing Transformation

 Viewing transformation: to place & point a camera to view
the scene.
 By default, the point of observation is at the origin (0,0,0)

looking down the negative z-axis (“into” the monitor screen).
 Objects drawn with positive z values would be behind the observer.

 You can put the point of observation anywhere you want, and
looking in any direction.

7

Transformation demo - Nate

Projection and Viewport Transformations

 Projection transformation: applied to your final Modelview
orientation in which way to project.
 Defines how a constructed scene (after all the modeling is

done) is translated to the final 2D image on the viewing plane.
 Defines the viewing volume and establishes clipping planes.
 Two types
 Orthographic

 Perspective

 Viewport transformation: maps the 2D projection result of
your scene to a window somewhere on your screen.8

OpenGL Transformations
 In OpenGL, all the transformations are described as a

multiplication of matrices.
 The mathematics behind these transformations are greatly

simplified by the mathematical notation of the matrix.
 Each of the transformations can be achieved by multiplying a

matrix that contains the vertices, by a matrix that describes
the transformation.

9

OpenGL Geometric Transformation Functions

 OpenGL matrix operation function
void glMatrixMode(Glenum mode);
 Specify which matrix is the current matrix

 mode: GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE;

GL_COLOR (if ARB_imaging extension is supported).

e.g.: glMatrixMode (GL_MODELVIEW);

OpenGL matrix operations
glMatrixMode (GL_MODELVIEW);

glLoadIdentity (); // assign identity matrix to the current matrix

//… to apply any transformation matrix to transform your scene …

Set up the matrix for
geometric transformations

10

Model-View Matrix: GL_MODELVIEW
 GL_MODELVIEW

 Store and combine the geometric transformations to models and viewing-coordinate
system
 Combine viewing matrix and modeling matrix into one matrix

 Viewing transformation
 For example: gluLookAt()

 Modeling transformation: OpenGL transformation functions
 Translation transformation: m12, m13, m14

 Other Euclidean/affine transformations, such as rotation or scaling: (m0, m1, m2), (m4, m5,
m6) and (m8, m9, m10)

11

Model-View Matrix: GL_MODELVIEW
 GL_MODELVIEW

glMatrixMode (GL_MODELVIEW);

glLoadIdentity (); // assign identity matrix to the current matrix

These 3 sets
 (m0, m1, m2) : +X axis, left vector, (1, 0, 0) by default

 (m4, m5, m6) : +Y axis, up vector, (0, 1, 0) by default

 (m8, m9, m10) : +Z axis, forward vector, (0, 0, 1) by default

are actually representing 3 orthogonal axes.

glLoadMatrix* (elements16); // replace the current matrix by your own

0.1 0.0 0.0 0.0
0.0 0.1 0.0 0.0
0.0 0.0 0.1 0.0
0.0 0.0 0.0 0.1

M

12

Model-View Matrix: GL_MODELVIEW
Example

glMatrixMode (GL_MODELVIEW);

glLoadIdentity ();

GLfloat elems [16];

GLint k;

for (k = 0; k < 16; k++)

elems [k] = float (k);

glLoadMatrixf (elems);

0.15 0.11 0.7 0.3
0.14 0.10 0.6 0.2
0.13 0.9 0.5 0.1
0.12 0.8 0.4 0.0

M

glMatrixMode()
http://www.opengl.org/sdk/docs/man/

13

OpenGL Geometric Transformation Functions
 Basic OpenGL geometric transformations on the matrix:

glTranslate* (tx, ty, tz);

[glTranslatef (25.0, -10.0, 0.0);] for 2D, set tz = 0.

- Post-multiplies the current matrix by a matrix that moves the object by the given x-, y-,
and z-values

glScale* (sx, sy, sz);
[glScalef (2.0, -3.0, 1.0);]
- Post-multiplies the current matrix by a matrix that scales an object about the origin.

None of sx, sy or sz is zero.

glRotate* (theta, vx, vy, vz);
[glRotatef (90.0, 0.0, 0.0, 1.0);]
- Post-multiplies the current matrix by a matrix that rotates the object in a

counterclockwise direction. vector v=(vx, vy, vz) defines the orientation for the
rotation axis that passes though the coordinate origin. (the rotation center is (0, 0, 0))

14

OpenGL: Order in Matrix Multiplication
glMatrixMode (GL_MODELVIEW);
glLoadIdentity (); //Set current matrix to the identity.
glMultMatrixf (elemsM2); //Post-multiply identity by matrix M2.
glMultMatrixf (elemsM1); //Post-multiply M2 by matrix M1.
glBegin (GL_POINTS)

glVertex3f (vertex);

glEnd();

Modelview matrix successively contains:
I(identity), M2, M2 M1

The concatenated matrix is:
M=M2 M1

The transformed vertex is:
M2 (M1 vertex)

In OpenGL, a transformation sequence is applied in reverse
order of which it is specified.

15

OpenGL: Order in Matrix Multiplication
 Example

// rotate object 30 degrees around Z-axis

glRotatef(30.0, 0.0, 0.0, 1.0);

// move object to (2.0, 3.0, 0.0)

glTranslatef(2.0, 3.0, 0.0);

drawObject();

The object will be translated first then rotated.

16

OpenGL Geometric Trans. Programming Examples
glMatrixMode (GL_MODELVIEW); //Identity matrix

glColor3f (0.0, 0.0, 1.0); // Set current color to blue

glRecti (50, 100, 200, 150); // Display blue rectangle.

glColor3f (1.0, 0.0, 0.0); // Red

glTranslatef (-200.0, -50.0, 0.0); // Set translation parameters.

glRecti (50, 100, 200, 150); // Display red, translated rectangle.

glLoadIdentity (); // Reset current matrix to identity.

glRotatef (90.0, 0.0, 0.0, 1.0); // Set 90-deg, rotation about z axis.

glRecti (50, 100, 200, 150); // Display red, rotated rectangle.

glLoadIdentity (); // Reset current matrix to identity.

glScalef (-0.5, 1.0, 1.0); // Set scale-reflection parameters.

glRecti (50, 100, 200, 150); // Display red, transformed rectangle.

17

Summary
 Basic 2D geometric transformations

 Translation

 Rotation

 Scaling

 Reflection, shearing…

 Combination of these transformations

 Homogeneous coordinate representation

 OpenGL geometric transformation functions
 GL_MODELVIEW matrix

 Order in multiple matrix multiplication

 Example

18

