
1

CS 430/536

Computer Graphics I

Polygon Clipping and Filling
Week 3, Lecture 5

David Breen, William Regli and Maxim Peysakhov

Geometric and Intelligent Computing Laboratory

Department of Computer Science

Drexel University

http://gicl.cs.drexel.edu

2

Outline

• Polygon clipping

– Sutherland-Hodgman,

– Weiler-Atherton

• Polygon filling

– Scan filling polygons

– Flood filling polygons

• Introduction and discussion of homework #2

3

Polygon

• Ordered set of vertices (points)

– Usually counter-clockwise

• Two consecutive vertices define an edge

• Left side of edge is inside

• Right side is outside

• Last vertex implicitly connected to first

• In 3D vertices are co-planar

4

Polygon Clipping

• Lots of different cases

• Issues

– Edges of polygon need

to be tested against

clipping rectangle

– May need to add new edges

– Edges discarded or divided

– Multiple polygons can result

from a single polygon

1994 Foley/VanDam/Finer/Huges/Phillips ICG

5

The Sutherland-Hodgman

Polygon-Clipping Algorithm
• Divide and Conquer

• Idea:

– Clip single polygon using

single infinite clip edge

– Repeat 4 times

• Note the generality:

– 2D convex n-gons can clip

arbitrary n-gons

– 3D convex polyhedra can

clip arbitrary polyhedra

1994 Foley/VanDam/Finer/Huges/Phillips ICG

6

Sutherland-Hodgman Algorithm

• Input:

– v1, v2, … vn the vertices defining the polygon

– Single infinite clip edge w/ inside/outside info

• Output:

– v’1, v’2, … v’m, vertices of the clipped polygon

• Do this 4 (or ne) times

• Traverse vertices (edges)

• Add vertices one-at-a-time to output polygon

– Use inside/outside info

– Edge intersections

7

• Can be done incrementally

• If first point inside add. If outside, don’t add

• Move around polygon from v1 to vn and back to v1

• Check vi,vi+1 wrt the clip edge

• Need vi,vi+1‘s inside/outside status

• Add vertex one at a time. There are 4 cases:

1994 Foley/VanDam/Finer/Huges/Phillips ICG

Sutherland-Hodgman Algorithm

8

• foreach polygon P P’ = P

– foreach clipping edge (there are 4) {

• Clip polygon P’ to clipping edge

– foreach edge in polygon P’

»Check clipping cases (there are 4)

»Case 1 : Output vi+1

»Case 2 : Output intersection point

»Case 3 : No output

»Case 4 : Output intersection point

& vi+1}

Sutherland-Hodgman Algorithm

9

Sutherland-Hodgman Algorithm

Animated by Max Peysakhov @ Drexel University

10

Sutherland-Hodgman Algorithm

Animated by Max Peysakhov @ Drexel University

11

Final Result

Note: Edges

XY and ZW!

12

• Clipping a concave polygon

• Can produce two CONNECTED areas

1994 Foley/VanDam/Finer/Huges/Phillips ICG

Issues with Sutherland-

Hodgman Algorithm

13

• General clipping algorithm for concave

polygons with holes

• Produces multiple polygons (with holes)

• Make linked list data structure

• Traverse to make new polygon(s)

1994 Foley/VanDam/Finer/Huges/Phillips ICG

Weiler-Atherton Algorithm

14

Weiler-Atherton Algorithm

• Given polygons A and B as linked list of

vertices (counter-clockwise order)

• Find all edge intersections & place in list

• Insert as “intersection” nodes

• Nodes point to A & B

• Determine in/out

status of vertices

15

Intersection Special Cases

• If “intersecting” edges are parallel, ignore

• Intersection point is a vertex

– Vertex of A lies on a vertex or edge of B

– Edge of A runs through a vertex of B

– Replace vertex with an intersection node

16

Weiler-Atherton Algorithm:

Union

• Find a vertex of A outside of B

• Traverse linked list

• At each intersection point switch to

other polygon

• Do until return to starting vertex

• All visited vertices and nodes define

union’ed polygon

17

Weiler-Atherton Algorithm:

Intersection
• Start at intersection point

– If connected to an “inside” vertex, go there

– Else step to an intersection point

– If neither, stop

• Traverse linked list

• At each intersection point switch to other
polygon and remove intersection point from list

• Do until return to starting intersection point

• If intersection list not empty, pick another one

• All visited vertices and nodes define and’ed
polygon

18

Boolean Special Cases

If polygons don’t intersect

– Union

• If one inside the other, return polygon that

surrounds the other

• Else, return both polygons

– Intersection

• If one inside the other, return polygon inside

the other

• Else, return no polygons

19

Point P Inside a Polygon?

• Connect P with another point P` that you know is
outside polygon

• Intersect segment PP` with polygon edges

• Watch out for vertices!

• If # intersections is even (or 0) Outside

• If odd Inside

20

Edge clipping

• Re-use line clipping from HW1

– Similar triangles method

– Cyrus-Beck line clipping

• Yet another technique

24

Intersecting Two Edges (1)

• Edge 0 : (P0,P1)

• Edge 2 : (P2,P3)

• E0 = P0 + t0(P1-P0) D0 (P1-P0)

• E2 = P2 + t2(P3-P2) D2 (P3-P2)

• P0 + t0D0 = P2 + t2D2

• x0 +dx0 t0 = x2 +dx2 t2

• y0 +dy0 t0 = y2 +dy2 t2

25

Intersecting Two Edges (2)

• Solve for t’s

• t0 = ((x0 - x2) dy2+ (y2 - y0) dx2) /

(dy0 dx2- dx0 dy2)

• t2 = ((x2 - x0) dy0+ (y0 - y2) dx0) /

(dy2 dx0- dx2 dy0)

• See http://www.vb-helper.com/howto_intersect_lines.html

for derivation

• Edges intersect if 0 t0,t2 1

• Edges are parallel if denominator = 0

26

Filling Primitives: Rectangles,

Polygons & Circles
• Two part process

– Which pixels to fill?

– What values to fill them with?

• Idea: Coherence

– Spatial: pixels are the

same from pixel-to-pixel

and scan-line to scan line;

– Span: all pixels on a span get the same value

– Scan-line: consecutive scan lines are the same

– Edge: pixels are the same along edges

27

Scan Filling Primitives:

Rectangles
• Easy algorithm

– Fill from xmin to xmax

Fill from ymin to ymax

• Issues

– What if two adjacent

rectangles share an edge?

– Color the boundary pixels twice?

– Rules:

• Color only interior pixels

• Color left and bottom edges

28

Scan Filling Primitives:

Polygons
• Observe:

– FA, DC intersections

are integer

– FE, ED intersections

are not integer

• For each scan line,

how to figure out

which pixels are

inside the polygon?

1994 Foley/VanDam/Finer/Huges/Phillips ICG

29

Scan Filling Polygons

• Idea #1: use midpoint

algo on each edge, fill

in between extrema

points

• Note: many extrema

pixels lie outside the

polygon

• Why: midpoint algo

has no sense of in/out

1994 Foley/VanDam/Finer/Huges/Phillips ICG

30

Scan Filling Polygons

• Idea #2: draw pixels only strictly inside
– Find intersections of

scan line with edges

– Sort intersections by
increasing x coordinate

– Fill pixels on inside
based on a parity bit
• Bp initially even (off)

• Invert at each intersect

• Draw with odd,
do not draw when even

1994 Foley/VanDam/Finer/Huges/Phillips ICG

31

Scan Filling Polygons

• Issues with Idea #2:

– If at a fractional x value, how to pick which

pixels are in interior?

– Intersections at integer vertex coordinates?

– Shared vertices?

– Vertices that define a horizontal edge?

32

How to handle vertices?

• Problem:

– vertices are counted twice

• Solution:

– If both neighboring vertices are

on the same side of the scan

line, don’t count it

– If both neighboring vertices are

on different sides of a scan

line, count it once

– Compare current y value with y

value of neighboring vertices

Y1

Y2

1

2

1

1 2 1

1

Y1

Y2

1

2

1

1 1 1

1

33

How to handle horizontal edges?

• Idea: don’t count their vertices

• Apply open and closed status

to vertices to other edges

– ymin vertex closed

– ymax vertex is open

• On AB, A is at ymin for JA; AB

does not contribute, Bp is odd

and draw AB

• Edge BC has ymin at B, but AB

does not contribute, Bp

becomes even and drawing

stops

1994 Foley/VanDam/Finer/Huges/Phillips ICG

34

How to handle horizontal edges?

• Start drawing at IJ

(Bp becomes odd).

• C is ymax (open) for BC.

Bp doesn’t change.

• Ignore CD. D is ymin (closed)

for DE. Bp becomes even.

Stop drawing.

• I is ymax (open) for IJ.

No drawing.

• Ignore IH. H is ymin (closed)

for GH. Bp becomes odd.

Draw to FE.

• Ignore GF. No drawing
1994 Foley/VanDam/Finer/Huges/Phillips ICG

36

Polygon Filling Algorithm

• For each polygon

– For each edge, mark each scan-line that the edge
crosses by examining its ymin and ymax

• If edge is horizontal, ignore it

• If ymax on scan-line, ignore it

• If ymin <= y < ymax add edge to scan-line y‘s edge list

– For each scan-line between polygon’s ymin and ymax

• Calculate intersections with edges on list

• Sort intersections in x

• Perform parity-bit scan-line filling

• Check for double intersection special case

– Clear scan-lines’ edge list

37

How to handle slivers?

• When the scan area does

not have an “interior”

• Solution: use anti-aliasing

• But, to do so will require

softening the rules about

drawing only interior

pixels

1994 Foley/VanDam/Finer/Huges/Phillips ICG

38

Scan Filling Curved Objects

• Hard in general case

• Easier for circles and

ellipses.

• Use midpoint Alg to

generate boundary points.

• Fill in horizontal pixel spans

• Use symmetry

1994 Foley/VanDam/Finer/Huges/Phillips ICG

39

Boundary-Fill Algorithm

• Start with some

internal point (x,y)

• Color it

• Check neighbors for

filled or border color

• Color neighbors if OK

• Continue recursively

40

4 Connected Boundary-Fill Alg

Void BoundaryFill4(int x, int y, int fill,

int bnd)

{

If Color(x,y) != fill and Color(x,y) != bnd

{

SetColor(x,y) = fill;

BoundaryFill4(x+1, y, fill, bnd);

BoundaryFill4(x, y +1, fill, bnd);

BoundaryFill4(x-1, y, fill, bnd);

BoundaryFill4(x, y -1, fill, bnd);

}

}

41

Boundary-Fill Algorithm

• Issues with recursive boundary-fill algorithm:

– May make mistakes if parts of the space already filled

with the Fill color

– Requires very big stack size

• More efficient algorithms

– First color contiguous span along one scan line

– Only stack beginning positions of neighboring scan

lines

1994 Foley/VanDam/Finer/Huges/Phillips ICG

43

Course Status

So far everything straight lines!

• How to model 2D curved objects?
– Representation

• Circles

• Types of 2D Curves

• Parametric Cubic Curves

• Bézier Curves, (non)uniform, (non)rational

• NURBS

– Drawing of 2D Curves
• Line drawing algorithms for complex curves

• DeCasteljeau, Subdivision, De Boor

44

Homework #2

• Modify homework #1

• Add “moveto” and “lineto” commands

• They define closed polygons

• Clip polygons against window with

Sutherland-Hodgman algorithm

• Display edges with HW1 line-drawing

code

