CS 430/536 Computer Graphics I

Polygon Clipping and Filling Week 3, Lecture 5

David Breen, William Regli and Maxim Peysakhov
Geometric and Intelligent Computing Laboratory
Department of Computer Science
Drexel University

http://gicl.cs.drexel.edu

Outline

- Polygon clipping
- Sutherland-Hodgman,
- Weiler-Atherton
- Polygon filling
- Scan filling polygons
- Flood filling polygons
- Introduction and discussion of homework \#2

Polygon

- Ordered set of vertices (points)
- Usually counter-clockwise
- Two consecutive vertices define an edge
- Left side of edge is inside
- Right side is outside
- Last vertex implicitly connected to first
- In 3D vertices are co-planar

Polygon Clipping

- Lots of different cases
- Issues
- Edges of polygon need to be tested against clipping rectangle

(a)

(b)
- May need to add new edges
- Edges discarded or divided

- Multiple polygons can result from a single polygon

The Sutherland-Hodgman Polygon-Clipping Algorithm

- Divide and Conquer
- Idea:
- Clip single polygon using single infinite clip edge
(a)

- Repeat 4 times
- 2D convex n-gons can clip arbitrary n -gons
- 3D convex polyhedra can clip arbitrary polyhedra

(b)
(d)

(e)
(c)

Sutherland-Hodgman Algorithm

- Input:
$-v_{1}, v_{2}, \ldots v_{n}$ the vertices defining the polygon
- Single infinite clip edge w/ inside/outside info
- Output:
$-v^{\prime}{ }_{1}, v^{\prime}{ }_{2}, \ldots v^{\prime}$, , vertices of the clipped polygon
- Do this 4 (or n_{e}) times
- Traverse vertices (edges)
- Add vertices one-at-a-time to output polygon
- Use inside/outside info
- Edge intersections

Sutherland-Hodgman Algorithm

- Can be done incrementally
- If first point inside add. If outside, don't add
- Move around polygon from v_{I} to v_{n} and back to v_{I}
- Check v_{i}, v_{i+1} wrt the clip edge
- Need v_{i}, v_{i+1} 's inside/outside status
- Add vertex one at a time. There are 4 cases:

Sutherland-Hodgman Algorithm

- foreach polygon $\boldsymbol{P} \quad \boldsymbol{P}^{\boldsymbol{\prime}}=\boldsymbol{P}$
-foreach clipping edge (there are 4) \{
- Clip polygon P^{\prime} to clipping edge
-foreach edge in polygon P^{\prime}
" Check clipping cases (there are 4)
"Case 1 : Output v_{i+1}
"Case 2 : Output intersection point
» Case 3 : No output
» Case 4 : Output intersection point \& $\left.v_{i+1}\right\}$

Sutherland-Hodgman Algorithm

$\{A, B, C, D, E, F, G, H, A\}$

7

Sutherland-Hodgman Algorithm

$\{\AA, B, C, D, E, F, G, H, A\}$

f

Animated by Max Peysakhov @ Drexel University

Final Result

$\{A, B, X, Y, E, Z, W, A\}$

Note: Edges XY and ZW!

Issues with SutherlandHodgman Algorithm

- Clipping a concave polygon
- Can produce two CONNECTED areas

Weiler-Atherton Algorithm

- General clipping algorithm for concave polygons with holes
- Produces multiple polygons (with holes)
- Make linked list data structure
- Traverse to make new polygon(s)

Weiler-Atherton Algorithm

- Given polygons A and B as linked list of vertices (counter-clockwise order)
- Find all edge intersections \& place in list
- Insert as "intersection" nodes
- Nodes point to A \& B
- Determine in/out status of vertices

Intersection Special Cases

- If "intersecting" edges are parallel, ignore
- Intersection point is a vertex
- Vertex of A lies on a vertex or edge of B
- Edge of A runs through a vertex of B
- Replace vertex with an intersection node

Weiler-Atherton Algorithm: Union

- Find a vertex of A outside of B
- Traverse linked list
- At each intersection point switch to other polygon
- Do until return to starting vertex
- All visited vertices and nodes define union'ed polygon

Weiler-Atherton Algorithm: Intersection

- Start at intersection point
- If connected to an "inside" vertex, go there
- Else step to an intersection point
- If neither, stop
- Traverse linked list
- At each intersection point switch to other polygon and remove intersection point from list
- Do until return to starting intersection point
- If intersection list not empty, pick another one
- All visited vertices and nodes define and'ed polygon

Boolean Special Cases

If polygons don't intersect

- Union
- If one inside the other, return polygon that surrounds the other
- Else, return both polygons
- Intersection
- If one inside the other, return polygon inside the other
- Else, return no polygons

Point P Inside a Polygon?

- Connect P with another point $P^{`}$ that you know is outside polygon
- Intersect segment PP` with polygon edges
- Watch out for vertices!
- If \# intersections is even (or 0) \boxtimes Outside
- If odd \boxtimes Inside

Edge clipping

- Re-use line clipping from HW1
- Similar triangles method
- Cyrus-Beck line clipping
- Yet another technique

Intersecting Two Edges (1)

- Edge 0 : $\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)$
- Edge 2 : $\left(\mathrm{P}_{2}, \mathrm{P}_{3}\right)$
- $\mathrm{E}_{0}=\mathrm{P}_{0}+\mathrm{t}_{0} *\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right)$
$\mathrm{D}_{0} \equiv\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right)$
- $\mathrm{E}_{2}=\mathrm{P}_{2}+\mathrm{t}_{2} *\left(\mathrm{P}_{3}-\mathrm{P}_{2}\right)$
$\mathrm{D}_{2} \equiv\left(\mathrm{P}_{3}-\mathrm{P}_{2}\right)$
- $P_{0}+t_{0} * D_{0}=P_{2}+t_{2} * D_{2}$
- $\mathrm{x}_{0}+\mathrm{dx} \mathrm{x}_{0} * \mathrm{t}_{0}=\mathrm{x}_{2}+\mathrm{dx} \mathrm{x}_{2} * \mathrm{t}_{2}$
- $y_{0}+d y_{0} * t_{0}=y_{2}+d y_{2} * t_{2}$

Intersecting Two Edges (2)

- Solve for t's
- $\mathrm{t}_{0}=\left(\left(\mathrm{x}_{0}-\mathrm{x}_{2}\right) * \mathrm{dy}_{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{0}\right) * \mathrm{dx}_{2}\right) /$

$$
\left(d y_{0} * d x_{2}-d x_{0} * d y_{2}\right)
$$

- $\mathrm{t}_{2}=\left(\left(\mathrm{x}_{2}-\mathrm{x}_{0}\right) * \mathrm{dy}_{0}+\left(\mathrm{y}_{0}-\mathrm{y}_{2}\right) * \mathrm{dx}_{0}\right) /$

$$
\left(d y_{2} * d x_{0}-d x_{2} * d y_{0}\right)
$$

- See http://www.vb-helper.com/howto_intersect_lines.html for derivation
- Edges intersect if $0 \leq \mathrm{t}_{0}, \mathrm{t}_{2} \leq 1$
- Edges are parallel if denominator $=0$

Filling Primitives: Rectangles, Polygons \& Circles

- Two part process
- Which pixels to fill?
- What values to fill them with?
- Idea: Coherence
- Spatial: pixels are the same from pixel-to-pixel and scan-line to scan line;
- Span: all pixels on a span get the same value
- Scan-line: consecutive scan lines are the same
- Edge: pixels are the same along edges

Scan Filling Primitives: Rectangles

- Easy algorithm
- Fill from $x_{\text {min }}$ to $x_{\text {max }}$

Fill from $y_{\text {min }}$ to $y_{\text {max }}$

- Issues
- What if two adjacent rectangles share an edge?
- Color the boundary pixels twice?
- Rules:
- Color only interior pixels
- Color left and bottom edges

Scan Filling Primitives: Polygons

- Observe:
- FA, DC intersections ${ }^{12}{ }^{\boldsymbol{A}}$ are integer
- FE, ED intersections are not integer
- For each scan line, how to figure out which pixels are inside the polygon?

Scan Filling Polygons

- Idea \#1: use midpoint algo on each edge, fill in between extrema points
- Note: many extrema pixels lie outside the polygon
- Why: midpoint algo has no sense of in/out

Scan Filling Polygons

- Idea \#2: draw pixels only strictly inside
- Find intersections of scan line with edges
- Sort intersections by increasing x coordinate
- Fill pixels on inside based on a parity bit
- B_{p} initially even (off)
- Invert at each intersect
- Draw with odd, do not draw when even

(b)

Scan Filling Polygons

- Issues with Idea \#2:
- If at a fractional x value, how to pick which pixels are in interior?
- Intersections at integer vertex coordinates?
- Shared vertices?
- Vertices that define a horizontal edge?

How to handle vertices?

- Problem:
- vertices are counted twice
- Solution:
- If both neighboring vertices are on the same side of the scan line, don't count it
- If both neighboring vertices are on different sides of a scan line, count it once
- Compare current y value with y value of neighboring vertices

How to handle horizontal edges?

- Idea: don't count their vertices
- Apply open and closed status to vertices to other edges
- $y_{\text {min }}$ vertex closed
$-y_{\max }$ vertex is open
- On AB, A is at $y_{\text {min }}$ for JA; AB does not contribute, B_{p} is odd and draw $A B$
- Edge BC has $y_{\text {min }}$ at B , but AB does not contribute, B_{p} becomes even and drawing stops

How to handle horizontal edges?

- Start drawing at IJ (B_{p} becomes odd).
- C is $y_{\text {max }}$ (open) for BC. B_{p} doesn't change.
- Ignore CD. D is $y_{\text {min }}$ (closed) for DE. B_{p} becomes even. Stop drawing.
- I is $y_{\text {max }}$ (open) for IJ. No drawing.
- Ignore IH. H is $y_{\text {min }}$ (closed) for GH. B_{p} becomes odd.
 Draw to FE.
- Ignore GF. No drawing

Polygon Filling Algorithm

- For each polygon
- For each edge, mark each scan-line that the edge crosses by examining its $y_{\text {min }}$ and $y_{\text {max }}$
- If edge is horizontal, ignore it
- If $y_{\text {max }}$ on scan-line, ignore it
- If $y_{\text {min }}<=y<y_{\text {max }}$ add edge to scan-line y 's edge list
- For each scan-line between polygon's $y_{\text {min }}$ and $y_{\text {max }}$
- Calculate intersections with edges on list
- Sort intersections in x
- Perform parity-bit scan-line filling
- Check for double intersection special case
- Clear scan-lines' edge list

How to handle slivers?

- When the scan area does not have an "interior"
- Solution: use anti-aliasing
- But, to do so will require softening the rules about drawing only interior pixels

Scan Filling Curved Objects

- Hard in general case
- Easier for circles and ellipses.
- Use midpoint Alg to generate boundary points.
- Fill in horizontal pixel spans
- Use symmetry

Boundary-Fill Algorithm

- Start with some internal point (x,y)
- Color it
- Check neighbors for filled or border color
- Color neighbors if OK
- Continue recursively

4 Connected Boundary-Fill Alg

Void BoundaryFill4(int x, int y, int fill, int bnd)

If Color(x,y) != fill and Color(x,y) != bnd \{
SetColor(x,y) = fill;
BoundaryFill4 (x+1, y, fill, bnd);
BoundaryFill4(x, y +1, fill, bnd);
BoundaryFill4 (x-1, y, fill, bnd);
BoundaryFill4(x, y -1, fill, bnd);
$\}$

Boundary-Fill Algorithm

- Issues with recursive boundary-fill algorithm:
- May make mistakes if parts of the space already filled with the Fill color
- Requires very big stack size
- More efficient algorithms
- First color contiguous span along one scan line
- Only stack beginning positions of neighboring scan lines

Course Status

So far everything straight lines!

- How to model 2D curved objects?
- Representation
- Circles
- Types of 2D Curves
- Parametric Cubic Curves
- Bézier Curves, (non)uniform, (non)rational
- NURBS
- Drawing of 2D Curves
- Line drawing algorithms for complex curves
- DeCasteljeau, Subdivision, De Boor

Homework \#2

- Modify homework \#1
- Add "moveto" and "lineto" commands
- They define closed polygons
- Clip polygons against window with Sutherland-Hodgman algorithm
- Display edges with HW1 line-drawing code

