L \
Prepareti& 30"y Asst. Prof. Dr..S : 4

VS SNuRTy | .

CSE 411

[
[V

144

JAINN S

|
[

~ Computer Grz
g

aphl 2570 utput

AUS

-..--J . .

- pa—
-_'

DULIZ3WDNT 10 AUNIE]

ijectiveS

= HB Ch. 4 & GVS Ch. 7 (partly)

= Coordinate reference frames

= Two-dimensional world reference

= OpenGL Point Functions

= OpenGL Line Functions

= Polygon Fill Areas & OpenGL functions

= OpenGL Vertex Arrays

= Character Primitives & OpenGL functions

Graphics Output Primitives

= Graphics output primitives

o Functions used to describe the various picture
components

o Examples: car, house, flower, ...
= Geometric primitives

o Functions used to describe points, lines,
triangles, circles, ...

O, . G
TCoordinate Reference Frames

= Cartesian coordinate system
o Can be 2D or 3D
o Objects are associated to a set of coordinates
o World coordinates are associated to a scene

= Object description
o Coordinates of vertices
o Color

o Coordinate extents (min and max for each
(X,y,z) in object — also called the bounding box

= In 2D — bounding rectangle

o %

% e L

ME,

CA
\p W

&

QO’

L 3 o

< 5,
7, &

I

Coordinate Reference Frames

(cont.)

= Screen coordinates
o Location of object on a monitor
o Start from upper left corner (origin (0,0))
o Pixel coordinates

= Scan line number (y)
= Column number (x)

o Other origin - lower left corner (0,0)

0 Pixel coordinate references the center of the
pixel
= setPixel (X, y)
= getPixel (x, y, color)
= Depth value is0in 2D

O -
'Pixel positions

y A
4
3
2
]
0
O 1 2 3 4 5 X

Referenced with respect to the lower-left corner of a screen
area.

¥ Coordinate Specifications

= Absolute coordinate values

= Relative coordinate values:

o Current position + offset

2D World Reference

= gluOrtho2D (xMin, xMax, yMin, yMax)

o References display window as a rectangle with
the minimum and maximum values listed

o Absolute coordinates within these ranges will be
displayed
glMatrixMode (GL PROJECTION) ;
= // set projection parameters to 2D
glLoadIdentity () ; // sets projection matrix to identity

gluOrtho2D (0.0, 200.0, 0.0, 150.0);

// set coordinate wvalues

// with vertices (0,0) for lower left
corner

// and (200, 150) for upper right corner

Point Functions

Point

o Coordinates
o Color — default color is white

o Size — one screen pixel by default

(glPointSize)

0 glBegin (GL POINTS)
glvVertex2i (50, 100) ;
glVertex2i (75, 150);

glVertex2i (100, 200) ;
glEnd() ;

o Coordinates can also be set in an int []:

int pointl [] = {50, 100};

glVertex2iv (pointl);

“TExample: Three Point Posmons

‘\}

200 + s

150 @

100 + @

U =

| | |
| | |

50 100 150 X

Generated with glBegin (GL_POINTS).

OpenGL Line Functions

= Line

o Defined by two endpoint coordinates

(one line segment)
glBegin (GL LINES) ;
glVertex2i(180, 15);
glVertex2i(10, 145);
glEnd() ;
o If several vertices, a line is drawn between the
first and second, then a separate one between
the third and the fourth, etc. (isolated vertices

are not drawn).

o)

SR
7 gt &

OpenGL Line Functions (cont.)

= Polyline

o Defined by line connecting all the points
glBegin (GL LINE STRIP) ;
glVertex2i(180, 15);
glVertex2i(10, 145);
glVertex2i(100, 20);
glVertex2i(30, 150);
glEnd() ;

o Draws a line between vertex 1 and vertex 2
then between vertex 2 and vertex 3
then between vertex 3 and vertex 4.

o)

'-‘ - p
A g

i@ i = By
"OpenGL Line Functions (cont.)

= Polyline

o In addition to GL LINE STRIP, adds a line

between the last vertex and the first one

glBegin (GL LINE LOOP) ;
glVertex2i(180, 15);
glVertex2i(10, 145);
glVertex2i(100, 20);
glVertex2i(30, 150);

glEnd() ;

o Draws a line between vertex 1 and vertex 2
then between vertex 2 and vertex 3

then between vertex 3 and vertex 4
then between vertex 4 and vertex 1.

. Line segments

pl pS pl pS pl

(a) (b) (¢)

With five endpoint coordinates

(a) An unconnected set of lines generated with the primitive line
constant GL_LINES.

(b) A polyline generated with GL_LINE_STRIP.
(c) A closed polyline generated with GL_LINE _LOOP.

O, .
'OpenGL Curve Functions

= Not included in OpenGL core library (only
Bézier splines: polynomials defined with a

discrete point set)

= GLU has routines for 3D quadrics like
spheres, cylinders and also rational B-

splines

= GLUT has routines for 3D quadrics like
spheres, cones and others

o)

S)
"q:' JL
“F.(:q“‘\'fz @

OpenGL Curve Functions (Cont.%)

ME,
CA
\p o
&
00*
L 3 [
< 5,
7, &
o E ns‘

= How to draw curves?

= Solution: Approximating using polyline

‘\qvf_'m .
22

5

-' v

213

- L)

700 L X
Ly

(a) (b)

(c)

A circular arc approximated with (a) three straight-line segments, (b) six line segments,
and (c) twelve line segments.

TRica! Sigas: Bigdes =

Fill-Area Primitives

Fill-areas
Area filled with a certain color
Most often the shape is that of a polygon
Boundaries are linear

Most curved surfaces can be approximated
with polygon facets (surface fitting with
polygon mesh)

Standard graphics objects are objects made
of a set of polygon surface patches.

(o) .
7 Solid-color fill areas curved

boundary

(a) (b) (c)

Specified with various boundaries.
(a) A circular fill region
(b) A fill area bounded by a closed polyline

(c) Afilled area specified with an irregular curved boundary
GraphicsOutput Primitives

20

HA r‘%’%
‘ha WO ¥

N o

-
~. : —
. ——
— —

Wire-frame representation for a cylinder, showing only the front (visible)
faces of the polygon mesh used to apperoximate the surfaces.

a

g

Polygon Fill-Areas

Polygon classification

Polygon is a figure with three or more
vertices and vertices are connected by a
sequence of straight line called edges or
sides

A polygon should be closed and with no
edges crossing

Convex polygon has all interior angles less
than or equal to 180°, line joining two interior
points is also interior to the polygon

Concave polygon otherwise

O, . .
TOpenGL Fill Area Functions

= OpenGL requires all polygons to be convex

= |f need to draw concave polygons, then split
them into convex polygons

= GLU library contains routines to convert
concave polygons into a set of triangles,
triangle mashes, triangle fans and straight
line segments

(o . G
'Valid and Invalid Polygons

IO X <o

Valid Invalid

w MEy %
é@
Q o
- [y
2, -
) &7

VERS

'Convex and Concave Polygons

r
N

N
.

< 180° -

(a)

S 180°

(b)

A convex polygon (a), and a concave polygon (b).

() hide
"ldentifying a concave polygon

VA
Vepe—1Vs (E, X E,).>0
E, (E, X E;). >0
OV_; (E3X E4):<()
E. (E; X E;).>0
J .V;. I L

E() E‘) (ES X E()): - _ ()
E, (E¢ X E,),>0

Vi vV,

P

By calculating cross-products of successive pairs of edge vectors

O = G
T Splitting a concave polygon

E.
3 < - \
2._..
Eq
1 2.
EZ
B
0 |

Using the vector method

O, i G
TExample: Splitting a concave

polygon
= Polygon from Slide 27:
o Edge vectors:

o zZ component is O because all edges are in Xy plane
= E;=(1,0,0) E,=(1,1,0) E.=(1,-1, 0)
= E,=(0,2,0) E.= (-3, 0, 0) E.= (0, -2, 0)

= (Remember) The cross-product E; x E, for two
successive edge vectors Is a vector
perpendicular the xy plane with z component

O, g e fa)
TExample: Splitting a concave

polygon (cont.)

= SO:
0 E;xE, =(0,0, 1) E,xE;=(0,0,-2)
a E;xE; =(0,0, 2) B EL=H0::0.16)
a EcxEg =(0,0,6) E;XxE;=(0, 0, 2)

= E, x E;negative, split along the line of vector
E2

O, =
'Example: Splitting a concave
polygon (cont.)

= Line equation for E,:
o Slope 1
oy intercept -1

= (Remember: y = mx +b, m = Zend=% p =Yo-mXxp)
Xend—Xo

(o) fa)
1 Splitting a concave polygon
."'A

«|
$
=Y

A

Using the rotational method

ME,
CA
\p W
&
00*
L4 [
< 5
< %,
(VEps

A

Example: Splitting a concave

polygon

= [he algorithm:
1. Shift each vertex V, to origin
2. Rotate so that next vertex V, .,is on the x-axis
3. If next vertex V, ., is below x-axis split

= Example: Polygon from Slide 31:

o After moving V, to the coordinate origin and
rotating V;onto the x axis, we find that V, is below

the x axis. So we split the polygon along the line of
\/ \/ aihicrh e tha v Avie

O e | (o)
TInside-Outside Tests

= In CG applications often interior regions of
objects have to be identified.

= Approaches:

o Odd-even rule:
1. Draw a line from a point to outside of coordinate extents
2. Count line segments of the object crossing this line

3. If the number is odd then the point is interior, else
exterior

ME,
CA

\p o
o
Qoﬂ
< o
< &y

s

TInside-Outside Tests (cont.)

= Nonzero winding-number rule:

1.

2.

<3

4,

a

Init winding-number to O

Draw a line from a point

Move along the line

Count line segments of object crossing this line

If crossing line is from right-to-left; winding-
number + 1, otherwise winding-number — 1

If winding-number # 0 then point interior, else
exterior

But: How to determine directional boundary
Crossings?
(Hint: Using vectors;)

il i
:u B ool \:
e

O, . | fan)
TExample: Inside-Outside Tests

A
A
. D _ D
exterior exterior
C Cgl
G G Y\
interior interior
E E
F F
B B
Odd-Even Rule Nonzero Winding-Number Rule

(a) (b)

O, fan)
TPolygon Tables

= Objects in a scene are described as sets of
polygon surface facets.

= Data Is organized in polygon data tables

o Geometric data tables
= Vertex table: Coordinate values for each vertex
= Edge table: Pointers to vertex table defining each edge in
polygon
= Surface-facet table: Pointers to edge tabel defining each
edge for given surface
o Attribute data tables: Degree of transparency,
surface reflectivity, texture characteristics

SURFACE-FACET

VERTEX TABLE EDGE TABLE TABLE

Vii X0 2 Ey: V.V, Sy EE,E,
Vi X Ey: ViV Sy By EyEs Eg
Vi X3 V2,25 Esz: Vi3,V
Vi X4V424 Egy VoV,
Vi Xe, Vs, 2 Ee: V.,V
Ee: ViV,

Representation for two adjacent polygon surface facets, formed with six edges and
five vertices.

W ”E4‘0
QG
Q o
< o
o]
<
/5 Y

TExpanded Edge Table

Vi, V2, 5
V, Vs, S
V3, V1,51.5;
V3, V4, SZ
Vi Ve, S)
VS’ Vl, Sz

For the surfaces of figure in Slide 37 expanded to include pointers into the surface-

facet table.

(o) C)
TPolygon Tables

= Error checking is easier when using three data
tables.

= Error checking includes:

1. Is every vertex listed as an endpoint for at least
two edges”?

2. Is every edge a part of at least one polygon?
5. Is every polygon closed?
4+ Has each polygon at least one shared edge?

5. If the edge table contains pointers to polygons,
nas every edge referenced by a polygon pointer a
reciprocal pointer back to the polygon?

O, .
7 Plane Equations

= For many CG applications the spatial
orientation of the surface components of
objects Is needed.

= This information is obtained from vertex
coordinate values and the equations that
describe the polygon surface.

= General equation for a plane is:

0 AxX+By+Cz+D=0
= (X, Y, z) any point on the plane
= A, B, C, D plane parameters

a M E/yo
§ %
< B
< 5,

%) &

(VEps

'Plane Equations: The

Parameters
= To find the plane parameters:

1.

Select three successive convex polygon vertices
(counterclockwise)

Solve (%) X (%) Vi + (%) z;, = —1 (Hint: Using
Cramer’s rule)
Solve:
A= y,1(z; — z3) + ¥,(23 — z1) + y3(21; — 2,)
B = z1(x; — x3) + 25(x3 — x1) + z3(x1 — x3)
C= x1(y2 —y3) + x2(y3 — y1) + x3(y1 — ¥2)

D = —x1(y223 — ¥322) — x2(¥321 — ¥123) — x3(y12, — ¥123)

() G
TFront and Back Polygon Faces

= The sides of a polygon surface have to be
distinguished.

= The side of a polygon surface facing into the interior
of an object is called back face.

= The visible/outward side of a polygon surface is
called front face.

= Every polygon on a plane partitions the space into
two regions.

= Any point that is not on the plane and is visible to the
front face of a polygon surface is called in front
of/outside the plane (and also outside the object).

= Otherwise behind/inside.

() . - @
TWhere Is the Point?

= For any point (X, y, Z) not on a plane:
0 Ax+By+Cz+D#0

= SO If:
2 Ax+ By + Cz + D <0, point is behind the plane
o0 Ax+ By + Cz + D >0, pointis in front of the plane

{v) e2iep |
TExample: Point in Relation to
Unit Cube .\’J

I

The shaded polygon surface of the unit cube has the plane equation
x—1=0

() . ()
T Orientation of a Polygon

Surface

= (Surface) Normal vector always points from
back face to front face and is perpendicular to
the surface, i.e. from inside to outside.

= When using normal vector, the plane equation
can be expressedas: N - P = —D (coming
soon)

Y

<

For a plane described with the equation Ax + By +Cz+ D =0 is
perpendicular to the plane‘and has Cartesian components (A, B, C)

O . (@
7T Calculating the Normal Vector

= Assumption: Convex polygon facet and right-
handed Cartesian coordinates

1. Select three vertex positions V,, V, and V,
(counterclockwise) from outside the object to
inside

2. Form two vectors from V, to V, and from V, to V,

5. Calculate N as vector cross product:

N = (V, = V;) x (V; —V;) (gives plane parameters
A, B, C)

4. Substitute for D (in equations above) and solve

O . (@
7T Calculating the Normal Vector

= Assumption: Convex polygon facet and right-
handed Cartesian coordinates

1. Select three vertex positions V,, V, and V,
(counterclockwise) from outside the object to
inside

2. Form two vectors from V, to V, and from V, to V,

5. Calculate N as vector cross product:

N = (V, = V;) x (V; —V;) (gives plane parameters
A, B, C)

4. Substitute for D (in equations above) and solve

ME,
CA
é@
Q
L4
=
1 &
< as‘

penGL Fill Area Functions

By default, a polygon interior is displayed
In a solid color, determined by the current
color settings

Alternatively, we can fill a polygon with a
pattern and we can display polygon
edges as line borders around the interior
fill

Polygon vertices are specified
counterclockwise.

m ne A
T et L
O . S

() . .
'OpenGL Fill Area Functions
(cont.)

= Rectangle

o glRect*(x1,yl1,x2,y2) where * means d, f, I, s,
V)
glRecti(200,100,50,250)
Int vertexl1[]= {200,100};
Int vertexl|]= {50,250},
glRectiv(vertexl, vertex2);

Square Fill Area

250
200 T+
150
100 +
S50 1

i ' % '

50 100 150 200

using the glRect function
GraphicsOutput Primitives

s

51

«%\51?!:(;"

-

fo

& >
24

i 5%

Counterclockwise? Clockwise?

ME,
CA
\p W
&
oeﬂ
L4
=
1 &
< as‘

= What happened in previous example?

= Why clockwise?

= Answer: In OpenGL normally always
counterclockwise but in general
counterclockwise is necessary Iif back
face/front face distinction is important.

() . .
'OpenGL Fill Area Functions

= GL POLYGON
o glBegin(GL_POLYGON);
glVertex2iv(pl),
glVertex2iv(p2),
glVertex2iv(p3),
glVertex2iv(p4),
glVertex2iv(p5);

glVertex2iv(p6);
glEnd();

O . . G
1OpenGL Fill Area Functions

(cont.)

m Trlangle (GL_TRIANGLES or
GL TRIANGLE STRIP or
GL_TRIANGLE FAN)

= GL TRIANGLE_ STRIP

o glBegin(GL_TRIANGLES);
glVertex2iv(pl);
glVertex2iv(p2);
glVertex2iv(p3);
glVertex2iv(p4);
glVertex2iv(p5);
glVertex2iv(p6);

glEnd();

() . .
'OpenGL Fill Area Functions
(cont.)

= GL TRIANGLE STRIP

o glBegin(GL TRIANGLE_STRIP);
glVertex2iv(pl),
glVertex2iv(p2);
glVertex2iv(p6);
glVertex2iv(p3);
glVertex2iv(p5);
glVertex2iv(p4),
glEnd();

() . .
'OpenGL Fill Area Functions
(cont.)

= GL TRIANGLE FAN
o glBegin(GL TRIANGLE_FAN);
glVertex2iv(pl),
glVertex2iv(p2);
glVertex2iv(p3);
glVertex2iv(p4),
glVertex2iv(p5);

glVertex2iv(p6);
glEnd();

w MEy

o he o

Vs

'Polygon Fip[l Areas

Ph l\’\ P§

-

7

AD

& 2043

O,

g% %
o3
e

.,- ; %
~:_ .
VC\ L X
(5%

p2 p3 p2 p3
(a) (b)

p6 pﬁ pb p_\'

p2 p3 p2 p3
(c) (d)
Using a list of six vertex positions. (a) A'single convex polygon fill area generated with the
primitive constant GL_POLYGON. (b) Two unconnected triangles generated with GL _
TRIANGLES. (c) Four connected triangles generated with GL. TRIANGLE STRIP. (d) Fou
connected triangles generated with GL_TRIANGLE_FAN.

O, . . G
'OpenGL Fill Area Functions

= Quads (GL_QUADS or GL_QUAD_STRIP)

. GL QUADS
o glBegin(GL_QUADS);
glVertex2iv(pl);
glVertex2iv(p2);
glVertex2iv(p3);
glVertex2iv(p4);
glVertex2iv(p5);
glVertex2iv(p6);
glVertex2iv(p7);
glVertex2iv(p8);
glEnd();

() . .
'OpenGL Fill Area Functions
(cont.)

= GL QUAD_STRIP

o glBegin(GL_QUADS);
glVertex2iv(pl);
glVertex2iv(p2);
glVertex2iv(p4);
glVertex2iv(p3);
glVertex2iv(p5);
glVertex2iv(p6);
glVertex2iv(p8);
glVertex2iv(p7);

glEnd();

]“ P>

Using a list of eight vertex positions. (a) Two unconnected quadrilaterals generated
with GL_QUADS. (b) Three connected quadrilaterals generated with
GL_QUAD_STRIP.

a M E‘/yo
\p W
5
ae‘n
L3
=
4, %,
CEpss

N

How many objects?

Assumption: Number of vertices = N

Triangles: int (N/3) (N = 3)
Triangles in strip: N-2 (N = 3)
Triangles in fan: N-2 (N 2 3)

Quads:int (N/4) (N=4)

ME,
CA
\p W
&
Qeﬂ
L4
=
< %,
CEpst

o

Processing Order

= Assumption: Position in vertex list = n
o (h=1,n=2,,n=N-2)

= Triangles: Nothing special
= Triangles in strip:

a Ifnodd:n,n+1,n+2
g Ifnevenin+1,n,n+2

= Trianglesinfan:1,n+1,n+ 2

= Quadsinstrip: 2n—-1, 2n, 2n + 2, 2n +1

()
TVertex Arrays

= We can store a list of points:
int pt[8][3] = {{0,0,0},{0,1,0},{1,0,0},{1,1,0},
{0,0,1},{0,1,1},{1,0,1},{1,1,1}};
= Above could be used for a cube.

= To plot faces can make calls beginning with
either glBegin(GL POLYGON) or
glBegin(GL QUADS)

0,

O; {0
TExample: Cube (cont.)

4 5
|
|
|
|
I

6 I

; i
l
|
l
1
|
l
l
l
l

()/_ ________________]

7

7
L
7
7
7
2 5
3

Subscript values for array pt corresponding to the vertex coordinates for
the cube shown in Slide 64.

O,
TVertex Arrays (cont.)

void quad(int p1, int p2, int p3, int p4) { void cube() {
glBegin(GL_QUADS); quad(6,2,3,7);
glVertex3i(pt[p1][0], pt[p1][1], pt[p1][2]); quad(5,1,0,4):
glVertex3i(pt[p2][0], pt[p2][1], pt[p2][2]); quad(7,3,1,5);
glVertex3i(pt[p3][0], pt[p3][1], pt[p3][2]); quad(4,0,2,6);
glVertex3i(pt[p4][0], pt[p4][1], pt[p4][2]); quad(2,0,1,3);

: glEnd(); quad(7,5,4,6);

}

Too many function calls!

.qm
Aot
o .

ME,
CA
\p W
&
Qeﬂ
L4
=
<
CEpst

o

Vertex Arrays (cont.)

s Use vertex arrays!

= General procedure:

1. Activate vertex array feature

2. Specify location and data for vertex
coordinates

5. Process multiple primitives with few calls

O,
TVertex Arrays (cont.)

glEnableClientState(GL_VERTEX ARRAY); (1)
glVertexPointer(3,GL INT,0,pt); (2)

GLubyte vertindex[] = {6,2,3,7, 5,1,0,4, 7,3,1,5, 4,0,2,6,
2,0,1,3, 7,5,4,6};, (vertices for cube)

glDrawElements(GL _QUADS, 24,
GL _UNSIGNED_BYTE,vertindex);

= Vertex arrays can be disabled with
glDisableClientState(GL _VERTEX ARRAY); (3)

O,
'OpenGL Output Primitives

= Next slides give a summary of OpenGL
output primitive functions and related
routines (incl. Pixel-array primitives and
Character primitives)

= (See also HB p. 102-117)

Table 4 1

TAB

L E -

Summary of OpenGL Output Primitive Functions and Related Routines

Description

Function
gluOrtho2D
glVertex*
glBegin (GL__POINTS) ;

glBegin

glBegin

glBegin

glRect™

(GL_LINES) ;

(GL_LINE__STRIP);

(GL_LINE__LOOP) ;

Specifies a two-dimensional world-
coordinate reference.

Selects a coordinate position. This function
must be placed withina glBegin/glEnd
pair.

Plots one or more point positions, each
specified in a glVertex function. The list
of positions is then closed with a glEnd
statement.

Displays a set of straight-line segments,
whose endpoint coordinates are specified
in glVertex functions. The list of
endpoints is then closed with a glEnd
statement.

Displays a polyline, specified using the
same structure as GL__ LLTNES.

Displays a closed polyline, specified using
the same structure as GL__LINES.

layb a fill rectangle in the xy plane.

Graph;.c;smoumut.f’nm.nwéa et 70

glBegin

glBegin

glBegin

glBegin

glBegin

glBegin

le 4-1 (cont.)

(GL_POLYGON) ;

(GL_TRIANGLES) ;

(GL_TRIANGLE__STRIP) ;

(GL_TRIANGLE__FAN) ;

(GL_QUADS) ;

(GL_QUAD__STRIP) ;

glEnableClientState
(GL_VERTEX_ARRAY) ;

glVertexPointer (size, type,.

stride,

array) ;

glDrawElements (prim, num,

type, array) ;

%&s&’f

Displays a fill polygon, whose vertices are
given in glVertex functions and
terminated with a glEnd statement.

Displays a set of fill triangles using the
same structure as GL__ POLYGON.

Displays a fill-triangle mesh, specified
using the same structure as GL__POLYGON.

Displays a fill-triangle mesh in a fan shape
with all triangles connected to the first
vertex, specified with same structure as
GL_POLYGON.

Displays a set of fill quadrilaterals,
specified with the same structure as
GL__POLYGON.

Displays a fill-quadrilateral mesh, specified
with the same structure as GL__ POLYGON.

Activates vertex-array features of
OpenGL.

Specifies an array of coordinate values.

Displays a specified primitive type from
array data.

Graphics Output Primitives 71

Copyright 92011 Pearson Education, publishing as Prentice Hall

)

Nl

TABLE 4-

(continued)

Table 4-1 (cont.)

Function

Description

glNewList (listID, listMode)

glGenLists

glIsList

glCalllist

gllListBase

glCallLists

glDeleteLists

glRasterPos™

Defines a set of commands as a display
list, terminated with a glEndList
statement.

Generates one or more display-list
identifiers.

Queries OpenGL to determine whether a
display-list identifier is in use.

Executes a single display list.

Specifies an offset value for an array of
display-list identifiers.

Executes multiple display lists.

Eliminates a specified sequence of display

lists.

Specifies a two-dimensional or three-
dimensional current position for the
frame buffer. This position is used as a
reference for bitmap and pixmap

Graphics Output Pripiittedns. 72

Copyrght ©2011 Pearson Education, publishing as Prentice Hall

glBitmap (w, h, xO,

le 4-1 (cont.)

yO.
xShift, yShift, pattern);

%&\f't

Specifies a binary pattern that is to be
mapped to pixel positions relative to the
current position.

glDrawPixels (w, h, type, Specifies a color pattern that is to be
format, pattern) ; mapped to pixel positions relative to the
current position.
glDrawBuffer Selects one or more buffers for storing a
pixmap.
glReadPixels Saves a block of pixels in a selected array.
glCopyPixels Copies a block of pixels from one buffer
position to another.
glLogicOp Selects a logical operation for combining
two pixel arrays, after enabling with the
constant GL__ COLOR__LOGIC_ OP.
glutBitmapCharacter Specifies a font and a bitmap character for
(font. char) ; display.
glutStrokeCharacter Specifies a font and an outline character for
(font, char); display.
glutReshapeFunc Specifies actions to be taken when
display-window dimensions are
changed.
Graphics Quitput Primitives 73

' T
Copyright ©2011 Pearson Education, publishing as Prentice Hall

Next Lecture

Attributes of Graphics Primitives

() (@
T References o

= Donald Hearn, M. Pauline Baker, Warren R.
Carithers, “Computer Graphics with OpenGL, 4th
Edition”; Pearson, 2011

= Sumanta Guha, “"Computer Graphics Through
OpenGL: From Theory to Experiments”, CRC
Press, 2010

= Richard S. Wright, Nicholas Haemel, Graham
Sellers, Benjamin Lipchak, "OpenGL SuperBible:
Comprehensive Tutorial and Reference”, Addison-
Wesley, 2010

= Edward Angel, “Interactive Computer Graphics. A
Top-Down Approach Using OpenGL”, Addison-
Wesley, 2005

