
CSE 411

Computer Graphics

Lecture #3 Graphics Output Primitives

Prepared & Presented by Asst. Prof. Dr. Samsun M. BAŞARICI

Objectives

 HB Ch. 4 & GVS Ch. 7 (partly)

 Coordinate reference frames

 Two-dimensional world reference

 OpenGL Point Functions

 OpenGL Line Functions

 Polygon Fill Areas & OpenGL functions

 OpenGL Vertex Arrays

 Character Primitives & OpenGL functions

2Graphics Output Primitives

Graphics Output Primitives

 Graphics output primitives

 Functions used to describe the various picture

components

 Examples: car, house, flower, …

 Geometric primitives

 Functions used to describe points, lines,

triangles, circles, …

3Graphics Output Primitives

Coordinate Reference Frames

 Cartesian coordinate system

 Can be 2D or 3D

 Objects are associated to a set of coordinates

 World coordinates are associated to a scene

 Object description

 Coordinates of vertices

 Color

 Coordinate extents (min and max for each

(x,y,z) in object – also called the bounding box

 In 2D – bounding rectangle
4Graphics Output Primitives

Coordinate Reference Frames

(cont.)
 Screen coordinates

 Location of object on a monitor

 Start from upper left corner (origin (0,0))

 Pixel coordinates

 Scan line number (y)

 Column number (x)

 Other origin  lower left corner (0,0)

 Pixel coordinate references the center of the
pixel

 setPixel (x, y)

 getPixel (x, y, color)

 Depth value is 0 in 2D
5Graphics Output Primitives

Pixel positions

Referenced with respect to the lower-left corner of a screen

area. 6Graphics Output Primitives

Coordinate Specifications

 Absolute coordinate values

 Relative coordinate values:

 Current position + offset

7Graphics Output Primitives

2D World Reference

 gluOrtho2D (xMin, xMax, yMin, yMax)
 References display window as a rectangle with

the minimum and maximum values listed

 Absolute coordinates within these ranges will be
displayed

glMatrixMode(GL_PROJECTION);
// set projection parameters to 2D

glLoadIdentity(); // sets projection matrix to identity

gluOrtho2D(0.0, 200.0, 0.0, 150.0);
// set coordinate values
// with vertices (0,0) for lower left

corner

// and (200, 150) for upper right corner

8Graphics Output Primitives

glOrtho2D Function

9Graphics Output Primitives

Point Functions

 Point

 Coordinates

 Color – default color is white

 Size – one screen pixel by default

(glPointSize)
 glBegin (GL_POINTS)

glVertex2i (50, 100);

glVertex2i (75, 150);

glVertex2i (100, 200);

glEnd();

 Coordinates can also be set in an int []:

int point1 [] = {50, 100};

…

glVertex2iv (point1);
10Graphics Output Primitives

Example: Three Point Positions

Generated with glBegin (GL_POINTS).
11Graphics Output Primitives

OpenGL Line Functions

 Line

 Defined by two endpoint coordinates
(one line segment)
glBegin(GL_LINES);

glVertex2i(180, 15);

glVertex2i(10, 145);

glEnd();

 If several vertices, a line is drawn between the
first and second, then a separate one between
the third and the fourth, etc. (isolated vertices
are not drawn).

12Graphics Output Primitives

OpenGL Line Functions (cont.)

 Polyline

 Defined by line connecting all the points
glBegin(GL_LINE_STRIP);

glVertex2i(180, 15);

glVertex2i(10, 145);

glVertex2i(100, 20);

glVertex2i(30, 150);

glEnd();

 Draws a line between vertex 1 and vertex 2
then between vertex 2 and vertex 3
then between vertex 3 and vertex 4.

13Graphics Output Primitives

OpenGL Line Functions (cont.)

 Polyline
 In addition to GL_LINE_STRIP, adds a line

between the last vertex and the first one
glBegin(GL_LINE_LOOP);

glVertex2i(180, 15);
glVertex2i(10, 145);
glVertex2i(100, 20);
glVertex2i(30, 150);

glEnd();

 Draws a line between vertex 1 and vertex 2
then between vertex 2 and vertex 3
then between vertex 3 and vertex 4
then between vertex 4 and vertex 1.

14Graphics Output Primitives

Example: Line segments

With five endpoint coordinates

(a)An unconnected set of lines generated with the primitive line

constant GL_LINES.

(b)A polyline generated with GL_LINE_STRIP.

(c) A closed polyline generated with GL_LINE_LOOP.

15Graphics Output Primitives

OpenGL Curve Functions

 Not included in OpenGL core library (only
Bézier splines: polynomials defined with a
discrete point set)

 GLU has routines for 3D quadrics like
spheres, cylinders and also rational B-
splines

 GLUT has routines for 3D quadrics like
spheres, cones and others

16Graphics Output Primitives

OpenGL Curve Functions (cont.)

 How to draw curves?

 Solution: Approximating using polyline

17Graphics Output Primitives

Curve Approximation

A circular arc approximated with (a) three straight-line segments, (b) six line segments,

and (c) twelve line segments. 18Graphics Output Primitives

Fill-Area Primitives

 Fill-areas

 Area filled with a certain color

 Most often the shape is that of a polygon

 Boundaries are linear

 Most curved surfaces can be approximated

with polygon facets (surface fitting with

polygon mesh)

 Standard graphics objects are objects made

of a set of polygon surface patches.

19Graphics Output Primitives

Solid-color fill areas curved

boundary

Specified with various boundaries.

(a)A circular fill region

(b)A fill area bounded by a closed polyline

(c) A filled area specified with an irregular curved boundary
20Graphics Output Primitives

Approximating a curved surface

Wire-frame representation for a cylinder, showing only the front (visible)

faces of the polygon mesh used to approximate the surfaces. 21Graphics Output Primitives

Polygon Fill-Areas

 Polygon classification
 Polygon is a figure with three or more

vertices and vertices are connected by a
sequence of straight line called edges or
sides

 A polygon should be closed and with no
edges crossing

 Convex polygon has all interior angles less
than or equal to 180º, line joining two interior
points is also interior to the polygon

 Concave polygon otherwise

22Graphics Output Primitives

OpenGL Fill Area Functions

 OpenGL requires all polygons to be convex

 If need to draw concave polygons, then split

them into convex polygons

 GLU library contains routines to convert

concave polygons into a set of triangles,

triangle mashes, triangle fans and straight

line segments

23Graphics Output Primitives

Valid and Invalid Polygons

24Graphics Output Primitives

Convex and Concave Polygons

A convex polygon (a), and a concave polygon (b).

25Graphics Output Primitives

Identifying a concave polygon

By calculating cross-products of successive pairs of edge vectors
26Graphics Output Primitives

Splitting a concave polygon

Using the vector method.
27Graphics Output Primitives

Example: Splitting a concave

polygon
 Polygon from Slide 27:

 Edge vectors:

 z component is 0 because all edges are in xy plane

 E1= (1, 0, 0) E2= (1, 1, 0) E3= (1, -1, 0)

 E4= (0, 2, 0) E5= (-3, 0, 0) E6= (0, -2, 0)

 (Remember) The cross-product Ej x Ek for two

successive edge vectors is a vector

perpendicular the xy plane with z component

equal to Ejx Eky - Ekx Ejy

28Graphics Output Primitives

Example: Splitting a concave

polygon (cont.)
 So:

 E1 x E2 = (0, 0, 1) E2 x E3 = (0, 0, -2)

 E3 x E4 = (0, 0, 2) E4 x E5 = (0, 0, 6)

 E5 x E6 = (0, 0, 6) E6 x E1 = (0, 0, 2)

 E2 x E3 negative, split along the line of vector

E2

29Graphics Output Primitives

Example: Splitting a concave

polygon (cont.)

30Graphics Output Primitives

Splitting a concave polygon

Using the rotational method
31Graphics Output Primitives

Example: Splitting a concave

polygon

32Graphics Output Primitives

Inside-Outside Tests

 In CG applications often interior regions of

objects have to be identified.

 Approaches:

 Odd-even rule:

1. Draw a line from a point to outside of coordinate extents

2. Count line segments of the object crossing this line

3. If the number is odd then the point is interior, else

exterior

33Graphics Output Primitives

Inside-Outside Tests (cont.)

 Nonzero winding-number rule:

1. Init winding-number to 0

2. Draw a line from a point

3. Move along the line

4. Count line segments of object crossing this line

5. If crossing line is from right-to-left; winding-

number + 1, otherwise winding-number – 1

6. If winding-number ≠ 0 then point interior, else

exterior

 But: How to determine directional boundary

crossings?

 (Hint: Using vectors) 34Graphics Output Primitives

Example: Inside-Outside Tests

35Graphics Output Primitives

Polygon Tables

 Objects in a scene are described as sets of

polygon surface facets.

 Data is organized in polygon data tables

 Geometric data tables

 Vertex table: Coordinate values for each vertex

 Edge table: Pointers to vertex table defining each edge in

polygon

 Surface-facet table: Pointers to edge tabel defining each

edge for given surface

 Attribute data tables: Degree of transparency,

surface reflectivity, texture characteristics

36Graphics Output Primitives

Geometric data-table

Representation for two adjacent polygon surface facets, formed with six edges and

five vertices. 37Graphics Output Primitives

Expanded Edge Table

For the surfaces of figure in Slide 37 expanded to include pointers into the surface-

facet table. 38Graphics Output Primitives

Polygon Tables

 Error checking is easier when using three data

tables.

 Error checking includes:

1. Is every vertex listed as an endpoint for at least

two edges?

2. Is every edge a part of at least one polygon?

3. Is every polygon closed?

4. Has each polygon at least one shared edge?

5. If the edge table contains pointers to polygons,

has every edge referenced by a polygon pointer a

reciprocal pointer back to the polygon?

39Graphics Output Primitives

Plane Equations

 For many CG applications the spatial

orientation of the surface components of

objects is needed.

 This information is obtained from vertex

coordinate values and the equations that

describe the polygon surface.

 General equation for a plane is:

 Ax + By + Cz + D = 0

 (x, y, z) any point on the plane

 A, B, C, D plane parameters

40Graphics Output Primitives

Plane Equations: The

Parameters

41Graphics Output Primitives

Front and Back Polygon Faces

 The sides of a polygon surface have to be

distinguished.

 The side of a polygon surface facing into the interior

of an object is called back face.

 The visible/outward side of a polygon surface is

called front face.

 Every polygon on a plane partitions the space into

two regions.

 Any point that is not on the plane and is visible to the

front face of a polygon surface is called in front

of/outside the plane (and also outside the object).

 Otherwise behind/inside.
42Graphics Output Primitives

Where is the Point?

 For any point (x, y, z) not on a plane:

 Ax + By + Cz + D ≠ 0

 So if:

 Ax + By + Cz + D < 0, point is behind the plane

 Ax + By + Cz + D > 0, point is in front of the plane

43Graphics Output Primitives

Example: Point in Relation to

Unit Cube

The shaded polygon surface of the unit cube has the plane equation

x − 1 = 0 44Graphics Output Primitives

Orientation of a Polygon

Surface

45Graphics Output Primitives

The normal vector N

For a plane described with the equation Ax + By +Cz + D = 0 is

perpendicular to the plane and has Cartesian components (A, B, C) 46Graphics Output Primitives

Calculating the Normal Vector

47Graphics Output Primitives

Calculating the Normal Vector

48Graphics Output Primitives

OpenGL Fill Area Functions

 By default, a polygon interior is displayed

in a solid color, determined by the current

color settings

 Alternatively, we can fill a polygon with a

pattern and we can display polygon

edges as line borders around the interior

fill

 Polygon vertices are specified

counterclockwise.

49Graphics Output Primitives

OpenGL Fill Area Functions

(cont.)

 Rectangle

 glRect*(x1,y1,x2,y2) where * means d, f, i, s,

v)

glRecti(200,100,50,250)

int vertex1[]= {200,100};

int vertex1[]= {50,250};

glRectiv(vertex1, vertex2);

50Graphics Output Primitives

Example: Square Fill Area

using the glRect function.
51Graphics Output Primitives

Counterclockwise? Clockwise?

 What happened in previous example?

 Why clockwise?

 Answer: In OpenGL normally always

counterclockwise but in general

counterclockwise is necessary if back

face/front face distinction is important.

52Graphics Output Primitives

OpenGL Fill Area Functions

 GL_POLYGON

 glBegin(GL_POLYGON);

glVertex2iv(p1);

glVertex2iv(p2);

glVertex2iv(p3);

glVertex2iv(p4);

glVertex2iv(p5);

glVertex2iv(p6);

glEnd();

53Graphics Output Primitives

OpenGL Fill Area Functions

(cont.)

 Triangle (GL_TRIANGLES or
GL_TRIANGLE_STRIP or
GL_TRIANGLE_FAN)

 GL_TRIANGLE_STRIP
 glBegin(GL_TRIANGLES);

glVertex2iv(p1);

glVertex2iv(p2);

glVertex2iv(p3);

glVertex2iv(p4);

glVertex2iv(p5);

glVertex2iv(p6);

glEnd();

54Graphics Output Primitives

 GL_TRIANGLE_STRIP

 glBegin(GL_TRIANGLE_STRIP);

glVertex2iv(p1);

glVertex2iv(p2);

glVertex2iv(p6);

glVertex2iv(p3);

glVertex2iv(p5);

glVertex2iv(p4);

glEnd();

OpenGL Fill Area Functions

(cont.)

55Graphics Output Primitives

 GL_TRIANGLE_FAN

 glBegin(GL_TRIANGLE_FAN);

glVertex2iv(p1);

glVertex2iv(p2);

glVertex2iv(p3);

glVertex2iv(p4);

glVertex2iv(p5);

glVertex2iv(p6);

glEnd();

OpenGL Fill Area Functions

(cont.)

56Graphics Output Primitives

Polygon Fill Areas

Using a list of six vertex positions. (a) A single convex polygon fill area generated with the

primitive constant GL_POLYGON. (b) Two unconnected triangles generated with GL_

TRIANGLES. (c) Four connected triangles generated with GL_TRIANGLE_STRIP. (d) Four

connected triangles generated with GL_TRIANGLE_FAN.
57Graphics Output Primitives

 Quads (GL_QUADS or GL_QUAD_STRIP)

 GL_QUADS
 glBegin(GL_QUADS);

glVertex2iv(p1);

glVertex2iv(p2);

glVertex2iv(p3);

glVertex2iv(p4);

glVertex2iv(p5);

glVertex2iv(p6);

glVertex2iv(p7);

glVertex2iv(p8);

glEnd();

OpenGL Fill Area Functions

58Graphics Output Primitives

 GL_QUAD_STRIP

 glBegin(GL_QUADS);

glVertex2iv(p1);

glVertex2iv(p2);

glVertex2iv(p4);

glVertex2iv(p3);

glVertex2iv(p5);

glVertex2iv(p6);

glVertex2iv(p8);

glVertex2iv(p7);

glEnd();

OpenGL Fill Area Functions

(cont.)

59Graphics Output Primitives

Quadrilateral Fill Areas

Using a list of eight vertex positions. (a) Two unconnected quadrilaterals generated

with GL_QUADS. (b) Three connected quadrilaterals generated with

GL_QUAD_STRIP.
60Graphics Output Primitives

How many objects?



61Graphics Output Primitives

Processing Order

 Assumption: Position in vertex list = n

 (n = 1, n = 2, …, n = N-2)

 Triangles: Nothing special

 Triangles in strip:

 If n odd: n, n + 1, n + 2

 If n even: n + 1, n, n + 2

 Triangles in fan: 1, n + 1, n + 2

 Quads in strip: 2n – 1, 2n, 2n + 2, 2n +1
62Graphics Output Primitives

Vertex Arrays

 We can store a list of points:

int pt[8][3] = {{0,0,0},{0,1,0},{1,0,0},{1,1,0},

{0,0,1},{0,1,1},{1,0,1},{1,1,1}};

 Above could be used for a cube.

 To plot faces can make calls beginning with

either glBegin(GL_POLYGON) or

glBegin(GL_QUADS)

63Graphics Output Primitives

Example: Cube

with an edge length of 1
64Graphics Output Primitives

Example: Cube (cont.)

Subscript values for array pt corresponding to the vertex coordinates for

the cube shown in Slide 64. 65Graphics Output Primitives

Vertex Arrays (cont.)

void cube() {

quad(6,2,3,7);

quad(5,1,0,4);

quad(7,3,1,5);

quad(4,0,2,6);

quad(2,0,1,3);

quad(7,5,4,6);

}

void quad(int p1, int p2, int p3, int p4) {

glBegin(GL_QUADS);

glVertex3i(pt[p1][0], pt[p1][1], pt[p1][2]);

glVertex3i(pt[p2][0], pt[p2][1], pt[p2][2]);

glVertex3i(pt[p3][0], pt[p3][1], pt[p3][2]);

glVertex3i(pt[p4][0], pt[p4][1], pt[p4][2]);

glEnd();

}

Too many function calls!

66Graphics Output Primitives

Vertex Arrays (cont.)

 Use vertex arrays!

 General procedure:

1. Activate vertex array feature

2. Specify location and data for vertex

coordinates

3. Process multiple primitives with few calls

67Graphics Output Primitives

Vertex Arrays (cont.)

glEnableClientState(GL_VERTEX_ARRAY); (1)

glVertexPointer(3,GL_INT,0,pt); (2)

GLubyte vertIndex[] = {6,2,3,7, 5,1,0,4, 7,3,1,5, 4,0,2,6,

2,0,1,3, 7,5,4,6}; (vertices for cube)

glDrawElements(GL_QUADS, 24,

GL_UNSIGNED_BYTE,vertIndex);

 Vertex arrays can be disabled with

glDisableClientState(GL_VERTEX_ARRAY); (3)

68Graphics Output Primitives

OpenGL Output Primitives

 Next slides give a summary of OpenGL

output primitive functions and related

routines (incl. Pixel-array primitives and

Character primitives)

 (See also HB p. 102-117)

69Graphics Output Primitives

Table 4.1

70Graphics Output Primitives

Table 4-1 (cont.)

71Graphics Output Primitives

Table 4-1 (cont.)

72Graphics Output Primitives

Table 4-1 (cont.)

73Graphics Output Primitives

Next Lecture

Attributes of Graphics Primitives

74Graphics Output Primitives

References

 Donald Hearn, M. Pauline Baker, Warren R.
Carithers, “Computer Graphics with OpenGL, 4th
Edition”; Pearson, 2011

 Sumanta Guha, “Computer Graphics Through
OpenGL: From Theory to Experiments”, CRC
Press, 2010

 Richard S. Wright, Nicholas Haemel, Graham
Sellers, Benjamin Lipchak, “OpenGL SuperBible:
Comprehensive Tutorial and Reference”, Addison-
Wesley, 2010

 Edward Angel, “Interactive Computer Graphics. A
Top-Down Approach Using OpenGL”, Addison-
Wesley, 2005

75Graphics Output Primitives

