
Computer Graphics

V - Semester

Unit – 4

Illumination and shading

K.A.Dhamotharan,

Assistant Professor (Senior Grade)

Illumination and Shading

Illumination Vs. Shading

 Illumination (lighting) model: determine the color of

a surface point by simulating some light attributes.

 Shading model: applies the illumination models at a

set of points and colors the whole image.

Illumination (Lighting) Model

• To model the interaction of light with

surfaces to determine the final color &

brightness of the surface

– Global illumination

– Local illumination

Global Illumination

• Global Illumination models: take into account

the interaction of light from all the surfaces in

the scene.

Local illumination

• Only consider the light, the observer position,

and the object material properties

Basic Illumination Model

• Simple and fast method for calculating

surface intensity at a given point

• Lighting calculation are based on:

– The background lighting conditions

– The light source specification: color, position

Ambient light (background

light)
• The light that is the result from the light reflecting off

other surfaces in the environment

• A general level of brightness for a scene that is

independent of the light positions or surface

directions -> ambient light

• Has no direction

• Each light source has an ambient light contribution, Ia

• For a given surface, we can specify how much

ambient light the surface can reflect using an ambient

reflection coefficient : Ka (0 < Ka < 1)

Ambient Light

• So the amount of light that the surface

reflect is therefore

Iamb = Ka * Ia

Diffuse Light

• The illumination that a surface receives from

a light source and reflects equally in all

directions

• This type of reflection is called Lambertian

Reflection (thus, Lambertian surfaces)

• The brightness of the surface is indepenent of

the observer position (since the light is

reflected in all direction equally)

Lambert’s Law
• How much light the surface receives from a

light source depends on the angle between
its angle and the vector from the surface point
to the light (light vector)

• Lambert’s law: the radiant energy ’Id’ from a
small surface da for a given light source is:

Id = IL * cos(q)
IL : the intensity of the light source

q is the angle between the surface

normal (N) and light vector (L)

The Diffuse Component

• Surface’s material property: assuming that the

surface can reflect Kd (0<Kd<1), diffuse reflection

coefficient) amount of diffuse light:

Idiff = Kd * IL * cos(q)

If N and L are normalized, cos(q) = N*L

Idiff = Kd * IL * (N*L)

• The total diffuse reflection = ambient + diffuse

Idiff = Ka * Ia + Kd * IL * (N*L)

Examples

Sphere diffusely lighted from various angles !

Specular Light

 These are the bright spots on objects (such as polished
metal, apple ...)

 Light reflected from the surface unequally to all directions.

 The result of near total reflection of the incident light in a
concentrated region around the specular reflection angle

Phong’s Model for Specular

• How much reflection light you can see

depends on where you are

Phong Illumination Curves

Specular exponents are much larger than 1;

Values of 100 are not uncommon.

n : glossiness, rate of falloff

Specular Highlights

• Shiny surfaces change appearance when

viewpoint is changed

• Specularities are caused by microscopically

smooth surfaces.

• A mirror is a perfect specular reflector

Reflected Ray

f f
a

L

N

R

V

f

L N(N•L)

Project L onto N

f

L

2N(N•L)

Double length of vector

f

L
R = 2N(N•L) - L

f

Subtract L

How to calculate R?

R + L = 2(N*L) N

R = 2(N*L) N - L

Half Vector

• An alternative way of computing phong

lighting is: Is = ks * Is * (N*H)n

• H (halfway vector): halfway between V

and L: (V+L)/2

• Fuzzier highlight

L
N

H

V

Phong Illumination

Moving Light

Change n

Putting It All Together

• Single Light (white light source)

Multiple Light Source

• IL: light intensity

• For multiple light sources

– Repeat the diffuse and specular calculations for each light
source

– Add the components from all light sources

– The ambient term contributes only once

• The different reflectance coefficients can differ.

– Simple “metal”: ks and kd share material color,

– Simple plastic: ks is white

• Remember, when cosine is negative lighting term is zero!

OpenGL Materials

GLfloat white8[] = {.8, .8, .8, 1.}, white2 = {.2,.2,.2,1.},black={0.,0.,0.};

GLfloat mat_shininess[] = {50.}; /* Phong exponent */

glMaterialfv(GL_FRONT_AND_BACK,

GL_AMBIENT, black);

glMaterialfv(GL_FRONT_AND_BACK,

GL_DIFFUSE, white8);

glMaterialfv(GL_FRONT_AND_BACK,

GL_SPECULAR, white2);

glMaterialfv(GL_FRONT_AND_BACK,

GL_SHININESS, mat_shininess);

OpenGL Lighting

GLfloat white[] = {1., 1., 1., 1.};

GLfloat light0_position[] = {1., 1., 5., 0.}; /* directional light (w=0) */

glLightfv(GL_LIGHT0, GL_POSITION, light0_position);

glLightfv(GL_LIGHT0, GL_DIFFUSE, white);

glLightfv(GL_LIGHT0, GL_SPECULAR, white);

glEnable(GL_LIGHT0);

glEnable(GL_NORMALIZE); /* normalize normal vectors */

glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);/* two-sided lighting*/

glEnable(GL_LIGHTING);

Shading Models for Polygons

 Constant Shading (flat shading)

 Compute illumination at any one point on the surface.
Use face or one normal from a pair of edges. Good for
far away light and viewer or if facets approximate
surface well.

 Per-Pixel Shading

 Compute illumination at every point on the surface.

 Interpolated Shading

 Compute illumination at vertices and interpolate color

Constant Shading

• Compute illumination only at one point on the
surface

• Okay to use if all of the following are true
– The object is not a curved (smooth) surface (e.g. a

polyhedron object)

– The light source is very far away (so N.L does not
change much across a polygon)

– The eye is very far away (so V.R does not change
much across a polygon)

– The surface is quite small (close to pixel size)

Un-lit

Flat Shading

Mach Band ?

Polygon Mesh Shading

• Shading each polygonal facet individually will not

generate an illusion of smooth curved surface

• Reason: polygons will have different colors along

the boundary, unfortunately, human perception

helps to even accentuate the discontinuity: mach

band effect

Mach Banding

Intensity change is exagerated

Dark facet looks darker and lighter looks even more lighter

Smooth Shading

• Need to have per-vertex normals

• Gouraud Shading

– Interpolate color across triangles

– Fast, supported by most of the graphics

accelerator cards

• Phong Shading

– Interpolate normals across triangles

– More accurate, but slow. Not widely supported by

hardware

Gouraud Shading

• Normals are computed at the polygon vertices

• If we only have per-face normals, the normal at each

vertex is the average of the normals of its adjacent

faces

• Intensity interpolation: linearly interpolate the pixel

intensity (color) across a polygon surface

Linear Interpolation

• Calculate the value of a point based on

the distances to the point’s two neighbor points

• If v1 and v2 are known, then

x = b/(a+b) * v1 + a/(a+b) * v2

Linear Interpolation in a

Triangle
• To determine the intensity

(color) of point P in the
triangle,

• we will do:

• determine the intensity of 4 by
linearly interpolating between
1 and 2

• determine the intensity of 5 by
linearly interpolating between
2 and 3

• determine the intensity of P by
linear interpolating between 4
and 5

Mach Band ?

Image

Phong Shading Model

 Gouraud shading does not properly handle specular highlights,

specially when the n parameter is large (small highlight).

Reason: colors are interpolated.

Solution: (Phong Shading Model)

1. Compute averaged normal at vertices.

2. Interpolate normals along edges and scan-lines. (component by
component)

3. Compute per-pixel illumination.

