Computer Graphics
V - Semester

Unit—4
[lHlumination and shading

K.A.Dhamotharan,
Assistant Professor (Senior Grade)

[llumination and Shading

lllumination Vs. Shading

= Jllumination (lighting) model: determine the color of
a surface point by simulating some light attributes.

= Shading model: applies the illumination models at a
set of points and colors the whole image.

lllumination (Lighting) Model

* To model the interaction of light with
surfaces to determine the final color &
brightness of the surface

— Global illumination
— Local illumination

Global lllumination

* Global lllumination models: take into account
the interaction of light from all the surfaces In
the scene.

object 4

object 2
object 3

light

O- object 1

L ocal illumination

* Only consider the light, the observer position,
and the object material properties

light O N

Basic lllumination Model

« Simple and fast method for calculating
surface intensity at a given point
 Lighting calculation are based on:

— The background lighting conditions
— The light source specification: color, position

Ambient light (background
light)

The light that is the result from the light reflecting off
other surfaces in the environment

A general level of brightness for a scene that is
Independent of the light positions or surface
directions -> ambient light

Has no direction
Each light source has an ambient light contribution, la

For a given surface, we can specify how much
ambient light the surface can reflect using an ambient
reflection coefficient: Ka (0 < Ka< 1)

Ambient Light

* So the amount of light that the surface
reflect Is therefore

lamb = Ka * la

Diffuse Light

 The illumination that a surface receives from
a light source and reflects equally in all
directions

* This type of reflection Is called Lambertian
Reflection (thus, Lambertian surfaces)

* The brightness of the surface is indepenent of
the observer position (since the light is
reflected in all direction equally)

Lambert’'s Law

 How much light the surface receives from a
light source depends on the angle between
its angle and the vector from the surface point

to the light (light vector)

* Lambert's law: the radiant energy 'l from a
small surface d, for a given light source is:

Iy =1 * cos(0) N
|, : the intensity of the light source

0 Is the angle between the surface
normal (N) and light vector (L)

The Diffuse Component

« Surface’s material property: assuming that the
surface can reflect K, (0<K,<1), diffuse reflection

coefficient) amount of diffuse light:
lisr = Kg * 1L * cos(0)
If N and L are normalized, cos(0) = N*L
lgie = Kg ™ I * (N*L)
* The total diffuse reflection = ambient + diffuse
it = Kg * 1 + Kg * 1. " (N*L)

Examples

Sphere diffusely lighted from various angles !

Specular Light

These are the bright spots on objects (such as polished
metal, apple ...)

Light reflected from the surface unequally to all directions.

The result of near total reflection of the incident light in a
concentrated region around the specular reflection angle

N

A

light O

Phong’s Model for Specular

 How much reflection light you can see
depends on where you are

specular reflection coefficient

Specular light :
/ specular light
&

Phong’s model Is=Ks* Is*CoOs (¢)

ight O

Phong lllumination Curves

Specular exponents are much larger than 1;
Values of 100 are not uncommon.

1 : glossiness, rate of falloff

Specular Highlights

 Shiny surfaces change appearance when
viewpoint Is changed

 Specularities are caused by microscopically
smooth surfaces.

« A mirror Is a perfect specular reflector

Reflected Ray

How to calculate R? R
R+ L=2(N*L) N s
R=2(N*L) N - L

Half Vector

* An alternative way of computing phong
lighting Is: Is = ks * Is * (N*H)"

» H (halfway vector): halfway between V
and L: (V+L)/2

* Fuzzier highlight \<|ﬁ

Phong lllumination

Moving Light

*1 1 1

Change n

Putting It All Together

« Single Light (white light source)

| = Ambient + Diffuse + Specular =

Ka*la+Kd*IL*(N.L) + Ks * IL*(R.V)

N

|d s

Multiple Light Source

|, : light intensity _ i
| = Ka*la+ Z('Kd*IL*(N.L) + Ks*IL*(R.V))

For multiple light sources

— Repeat the diffuse and specular calculations for each light
source

— Add the components from all light sources

— The ambient term contributes only once

The different reflectance coefficients can differ.

— Simple “metal”: k, and k4 share material color,

— Simple plastic: k, is white

Remember, when cosine is negative lighting term is zero!

OpenGL Materials

GLfloat white8[] ={.8, .8, .8, 1.}, white2 ={.2,.2,.2,1.},black={0.,0.,0.};
GLfloat mat_shininess[] = {50.}; [* Phong exponent */

glMaterialfv(GL_FRONT_AND_ BACK,
GL_AMBIENT, black);

glMaterialfv(GL_FRONT_AND BACK,
GL_DIFFUSE, white8);

glMaterialfv(GL_FRONT_AND BACK,
GL_SPECULAR, white2);

glMaterialfv(GL_FRONT_AND_ BACK,
GL_SHININESS, mat_shininess);

OpenGL Lighting

GLfloat white[] ={1., 1., 1., 1.};
GLfloat lightO_position[] ={1., 1., 5., 0.}; /* directional light (w=0) */

glLightfv(GL_LIGHTO, GL_POSITION, lightO_position);
glLightfv(GL_LIGHTO, GL_DIFFUSE, white);
glLightfv(GL_LIGHTO, GL_SPECULAR, white);
glEnable(GL_LIGHTO);

glEnable(GL_NORMALIZE); /* normalize normal vectors */
glLightModeli(GL_LIGHT _MODEL_TWO_SIDE, GL_TRUE);/* two-sided lighting*/

glEnable(GL_LIGHTING);

Shading Models for Polygons

= Constant Shading (flat shading)

= Compute illumination at any one point on the surface.
Use face or one normal from a 1Epalr of edges. Good for

far away light and viewer or if

surface well.

cets approximate

= Per-Pixel Shading

= Compute il
= Interpolated S

= Compute il

umination at every point on the surface.

nading

umination at vertices and interpolate color

Constant Shading

» Compute illumination only at one point on the
surface

« Okay to use If all of the following are true

— The object is not a curved (smooth) surface (e.g. a
polyhedron object)

— The light source is very far away (so N.L does not
change much across a polygon)

— The eye is very far away (so V.R does not change
much across a polygon)

— The surface is quite small (close to pixel size)

Un-lit

Flat Shading

Mach Band ?

Polygon Mesh Shading

« Shading each polygonal facet individually will not
generate an illusion of smooth curved surface

« Reason: polygons will have different colors along
the boundary, unfortunately, human perception
helps to even accentuate the discontinuity: mach

band effect S
’/ perceived intensity

sy AR

intensity

Mach Banding

=Intensity change is exagerated

=Dark facet looks darker and lighter looks even more lighter

Smooth Shading

* Need to have per-vertex normals

» Gouraud Shading
— Interpolate color across triangles

— Fast, supported by most of the graphics
accelerator cards

* Phong Shading
— Interpolate normals across triangles

— More accurate, but slow. Not widely supported by
hardware

Gouraud Shading

 Normals are computed at the polygon vertices

 If we only have per-face normals, the normal at each
vertex Is the average of the normals of its adjacent
faces

 Intensity interpolation: linearly interpolate the pixel
Intensity (color) across a polygon surface

n2
n1 N

N = (n1+n2+n3+n4) / 4

Linear Interpolation

« Calculate the value of a point based on
the distances to the point’s two neighbor points

* If vl and v2 are known, then
X = b/(a+b) * v1 + a/(a+b) * v2

« 2

Linear Interpolation in a
Triangle

To determine the intensity
(color) of point P in the

triangle,

we will do:

determine the intensity of 4 by *'

linearly interpolating between ¥*
1 and 2

determine the intensity of 5 by ,,
linearly interpolating between 5
2 and 3

determine the intensity of P by
linear interpolating between 4
and 5

Mach Band ?

Phong Shading Model

= Gouraud shading does not properly handle specular highlights,
specially when the n parameter is large (small highlight).

NS

=Reason: colors are interpolated.

=Solution: (Phong Shading Model)
=1. Compute averaged normal at vertices.

=2. Interpolate normals along edges and scan-lines. (component by
component)

=3, Compute per-pixel illumination.

Gouraud Phong

