Vg punny | e ..

CSE 411

C__..L.

tlwn'lv

Compute r Graph
b |
n" , !
S #6 2D nfé/t}c-'?ra

llil u\-wurbiu"‘

e shadhad LA

ey

Prepare

17~

A PRIV A WL W

Objectives

m HB Ch. 7, GVS Ch. 3
= Basic 2D Transformations (rigid-body
transformations):
o Translation
0 Rotation
0 Scaling

= Homogenenous Representations and
Coordinates

= 2D Composite Transformations

ME

A
\p W

é.@g

L 4 [

7 &y
A, &

L ERss

Objectives (cont.)

= Other Transformations:
o Reflection
0 Shearing

= Raster Methods for Transformations and
OpenGL

= [ransformations between 2D Coordinate
Systems and OpenGL

O, . .
T Geometric Transformations

= Sometimes also called modeling
transformations

o Geometric transformations: Changing an object’s
position (translation), orientation (rotation) or size
(scaling)

o Modeling transformations: Constructing a scene
or hierarchical description of a complex object
= Others transformations: reflection and
shearing operations

%
% WL

ME

A
\p W

éb@g

L 4 [

7 &y
7 &

L ERss

A

Basic 2D Geometric
Transformations

= 2D Translation

il XEm i SN

Ll

0 P'=P+T

o Translation moves the object without deformation

(rigid-body transformation)

o . G
TBasic 2D Geometric

Transformations (cont.)

= 2D Translation

o To move a line segment, apply the transformation
equation to each of the two line endpoints and
redraw the line between new endpoints

2 To move a polygon, apply the transformation
equation to coordinates of each vertex and
regenerate the polygon using the new set of vertex
coordinates

W MENO
2
o

0 ‘Dﬁv‘

&7

CEns

S

2D Translation Routine

class wcPt2D {
public:
GLfloat x, y;

I

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)

{
GLint k;

for (k = 0; k < nVerts; k++) {
verts [k].x = verts [K].x + tx;
verts [k].y = verts [k].y + ty;
}
glBegin (GL_POLYGON);
for (k = 0; k < nVerts; k++)
glVertex2f (verts [Kk].x, verts [K].y);
glEnd ();

}

© .
T Basic 2D Geometric
Transformations (cont.)

= 2D Rotation
o Rotation axis
2 Rotation angle
0 rotation point or pivot point (X,.y,)

© .
T Basic 2D Geometric
Transformations (cont.)

= 2D Rotation
o If 8 Is positive = counterclockwise rotation
o If 8 Is negative - clockwise rotation

o Remember:
m cos(a+b)=cosacosb-sinasinb
m cos(a-b)=cosasinb+sinacosb

© .
T Basic 2D Geometric
Transformations (cont.)

= 2D Rotation
o At first, suppose the pivot point is at the origin
o X=rcos(0+®P)=rcos B cosP-rsinOsin d

y’=r sin(8+®P) =r cos B sin @ + r sin 6 cos P

o x=rcosP,y=rsind
2 X=xcosO-ysinO

y'=xsin @ +y cos 6

(x%y’)

@) st i .
T Basic 2D Geometric

Transformations
= 2D Rotation
a2 P=R'P
= cOS® —sin®
| sin® cos®
(x.y)

/Ny
()]
)

© .
T Basic 2D Geometric
Transformations (cont.)

= 2D Rotation
o Rotation of a point about any specified position
(XrYr)
X=X+(X-%x)cosO6—-(y-y,) sinb
Y=y +(X - X;) sin 6 + (y - y,) cos 8
o Rotations also move objects without deformation

o Aline is rotated by applying the rotation formula to
each of the endpoints and redrawing the line
between the new end points

o A polygon is rotated by applying the rotation
formula to each of the vertices and redrawing the
polygon using new vertex coordinates

w MEy

AD
& 204
&

gaN7

QY

S
&

2D Rotation Routine

class wcPt2D {
public:
GLfloat x, y;

¥

void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt, GLdouble theta)
{

wcPt2D * vertsRot;

GLint k;

for (k = 0; k < nVerts; k++) {

vertsRot [K].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta) - (verts [K].y - pivPt.y) *
sin (theta);

vertsRot [K].y = pivPt.y + (verts [k].x - pivPt.X) * sin (theta) + (verts [k].y - pivPt.y) *
cos (theta);

}

giBegin (GL_POLYGON);
for (k = 0; k < nVerts; k++)
glVertex2f (vertsRot [k].x, vertsRot [K].y);
glEnd ();

}

© .
T Basic 2D Geometric
Transformations (cont.)

= 2D Scaling
o Scaling is used to alter the size of an object

o Simple 2D scaling is performed by multiplying
object positions (X, y) by scaling factors s, and s,

S €%
Y=y LS,

L ERss

'Basic 2D Geometric

Transformations (cont.)
= 2D Scaling

2 Any positive value can be used as scaling factor
= Values less than 1 reduce the size of the object
= Values greater than 1 enlarge the object
= If scaling factor is 1 then the object stays unchanged
= Ifs,=s,, we call it uniform scaling

= |f scaling factor <1, then the object moves closer to the
origin and If scaling factor >1, then the object moves
farther from the origin

| G

@) st i .
T Basic 2D Geometric

Transformations (cont.)

= 2D Scaling
2 Why does scaling also reposition object?
o Answer: See the matrix (multiplication)
o Still no clue?

xT [Sx O X] [x*Sxy+y*0
= [y’]_ [0 Sy] *[y]_ [x*0+y*sy]

©) s i . G
TBasic 2D Geometric

Transformations (cont.)
= 2D Scaling

2 We can control the location of the scaled object by
choosing a position called the fixed point (X;,Y;)

X" = X; = (X = Xg) Sy b R R R

X=X S, +X(1-5,)
y=y sytyi(l-s)
o Polygons are scaled by applying the above formula

to each vertex, then regenerating the polygon using
the transformed vertices

2D Scaling Routine

class wcPt2D {
public:
GLfloat x, y;
I3
void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt, GLfloat sx,
GLfloat sy)
{
wcPt2D vertsNew;
GLint k;

for (k =0; k < n; k++) {
vertsNew [K].x = verts [K].x * sx + fixedPt.x * (1 - sx);
vertsNew [Kk].y = verts [K].y * sy + fixedPt.y * (1 - sy);
}
glBegin (GL_POLYGON);
for (k = 0; k < n; k++)
glVertex2v (vertsNew [k].x, vertsNew [K].y);
glEnd ();

}

© . .
T Matrix Representations and
Homogeneous Coordinates

= Many graphics applications involve
seguences of geometric transformations
2 Animations
o Design and picture construction applications

= We will now consider matrix representations
of these operations

o Sequences of transformations can be efficiently
processed using matrices

(o) . . {0}
T Matrix Representatlons and

Homogeneous Coordinates (cont.)
= P=M,"P+M,

a2 P and P’ are column vectors

o M, is a 2 by 2 array containing multiplicative
factors

o M, is a 2 element column matrix containing
translational terms

o For translation M, is the identity matrix

o For rotation or scaling, M, contains the
translational terms associated with the pivot point
or scaling fixed point

(v} . . {0}
T Matrix Re p resentations an d

Homogeneous Coordinates (cont.)

= To produce a sequence of operations, such
as scaling followed by rotation then
translation, we could calculate the
transformed coordinates one step at a time

= A more efficient approach is to combine
transformations, without calculating
Intermediate coordinate values

(v} . . {0}
T Matrix Re p resentations an d

Homogeneous Coordinates (cont.)

= Multiplicative and translational terms for a 2D
geometric transformation can be combined
Into a single matrix if we expand the
representations to 3 by 3 matrices

o We can use the third column for translation terms,
and all transformation equations can be
expressed as matrix multiplications

O . . {0}
T Matrix Re p resentations an d

Homogeneous Coordinates (cont.)

= Expand each 2D coordinate (X,y) to three
element representation (x;,,y;,,h) called
homogeneous coordinates

= his the homogeneous parameter such that
X =x/h, y=y.h,
= - Infinite homogeneous representations for a
point
= A convenient choice is to choose h =1

G = . £
T Matrix Representations and

Homogeneous Coordinates (cont.)

= 2D Translation Matrix
Krfie Sl e g4
y =10 1 t |-y
1 Qa0 [l

or, P = T(Lt)P

G = . £
T Matrix Representations and

Homogeneous Coordinates (cont.)

= 2D Rotation Matrix

(cos® —sin® 0] [x
y'|=[sIn® cos® O]y
1 0 0 1(|1

O jisss g . G
T Matrix Representations and

Homogeneous Coordinates (cont.)

= 2D Scaling Matrix
lixtelee LRoit 0 S0 X
y'i={0 s, Of|y
R O B e U il 1

or, P’ = S(s,,s,) P

O, .
Tlnverse Transformations

= 2D Inverse Translation Matrix

1 0 -t
=101 -t
00 L

= By the way:
T 5*T =

©) m
“Tlnverse Transformations (cont.)

= 2D Inverse Rotation Matrix

' cos® sin® O
R*=|-sin® cos® O
0 0 1

= And also:

R**R=1

ME

A
\p W

é.@g

L 4 [

7 &y
7 &

L ERss

'Inverse Transformations (cont.)

= 2D Inverse Rotation Matrix:

Q

O

g

Q

If © Is negative - clockwise
In

R&*R =]

Only sine function is affected
Therefore we can say

R—l o RT

Is that true?
Proof: It's up to you ©

“TInverse Transformations (cont.)

= 2D Inverse Scaling Matrix

: 0

il

giulygr Dl
Sy

O =pilh

= Of course:

St

5%

e 2
S ¥

2D Composite Transformations

3
(N
T,

= We can setup a sequence of transformations
as a composite transformation matrix by

calculating the product of the individual
transformations

= P=M,;M,P
=M-P

() . |
12D Composite Transformations
(cont.)

= Composite 2D Translations

o If two successive translation are applied to a point P,
then the final transformed location P' is calculated as

Pi=T(ty,, ty,) Tty ty,) - P=T(y +1,, ty, +1,)-P
o ol Wece I G e e TRSTR B R
ST R o B R e
G0N G0 T gl g g R

ME,

A
\p W

é.@’

L 4 [

< oy
A, &

L ERss

(cont.)

= Composite 2D Rotations

P'=R(6,+6,)-P

(c0s®, -sin®, 0]
sin®, cos®, O0Of
0

0 11

 c0s 0,
Sin ©,

0

-sin®, 0]

cos®, O

0 e i

cos(0,+0,)

sin(®, +0,)
0

-sin(®,+0,) 0]

2D Composite Transformations

cos(®,+0,) 0
0 g

O,
12D Composite Transformations
(cont.)

= Composite 2D Scaling

SU8.8) ol88, =515 455,08)

Xo1 =Yy

i 5%

et L

2
(N
%

2D Com posite Transformations e
(cont.)

= Don't forget:
= Successive translations are additive

= Successive scalings are multiplicative

o For example: If we triple the size of an object
twice, the final size is nine (9) times the original

o 9times?
o0 Why?
o Proof: Again up to you ©

' General Pivot Point Rotation

. Steps:

1. Translate the object so that the pivot point Is
moved to the coordinate origin.

2. Rotate the object about the origin.

3. Translate the object so that the pivot point is
returned to its original position.

" General Pivot Point Rotation

a2
! a a2

O,
12D Composite Transformations
(cont.)

m General 2D Pivot-Point Rotation

1 0 x, ||cos® —-sin® 0|1 0 -—x
0 1 vy |-|sin® <cos® 0|0 1 -y,
0 0 1 0 0 1{{0 0 1

c0s® -sin® X (1-cos®)+Y,.sind® |
=|sIn® cos® Yy (1-cos®)—x sSIn®
0 0 1

General Fixed Point Scaling

m Steps:

1. Translate the object so that the fixed point
coincides with the coordinate origin.

2. Scale the object about the origin.

3. Translate the object so that the pivot point is
returned to its original position.

ME
A
QG%
) E)
L 4 [
< 5
7 &
CEns

o

(cont.)

e
4 a

General Fixed Point Scaling

(Xr, yr)

c/ x Q\
Ty G

: . .)
General Fixed Point Scaling =

(cont.)
General 2D Fixed-Point Scaling:
10x| 5,007 [10—xr] [560 xp(1—5y)]

01yr|.{05,0].101 =y 0°sy ve(l—3y)
001 ft00141]00 1] (00O 1

T(Xr, Yr) - S(Sx, Sy) * T(—Xf, —=Yr) = S(Xf, V5, Sxr Sy)

O
72D Composite Transformations
(cont.)

= General 2D scaling directions:

o Above: scaling parameters were along x and y
directions

2 What about arbitrary directions?
o Answer: See next slides

Scaling parameters s, and s, along orthogonal directions defined by the
angular displacement 6.

T gt 4

O, . e &
T General 2D Scaling Directions

(cont.)

= General procedure:

Rotate so that directions coincides with x and y
axes

2. Apply scaling transformation S(s4, s5)

3. Rotate back
= The composite matrix:

51 €0s20 + 5, sin?® (s, —s;)cosOsin® 0
R™'(0) * S(s1,52) * R(®) = [(s, — 5;) cosO@sin® s;sin%O +5,c0s20 0
0 0 1l

153

f fo"

n "o p-
(Y o
U)
SExpn ¥

2D Composite Transformations
(cont.)

S)
3 o
< oy
A, &7
/ngg\“

= Matrix Concatenation Properties:

o Matrix multiplication is associative !
= Mg M, My= (Mg My) - My =My (M, M)
= A composite matrix can be created by multiplicating left-
to-right (premultiplication) or right-to-left
(postmultiplication)
o Matrix multiplication is not commutative !

O,
172D Composite Transformations
(cont.)

= Matrix Concatenation Properties:

= But:
0 Two successive rotations
0 Two successive translations
o Two successive scalings

= are commutative!
o Why?
o Proof: You got it: Up to you © ©

w MEy

&7

LV ERS

AD
0 2
O
934
o
2
o 3
il
3, M
v

&

Reversing the order

> o
Final Final

Position o Position

(a) (b)

in which a sequence of transformations is performed may affect the transformed

position of an object.
In (&), an object is first translated in the x direction, then rotated counterclockwise

through an angle of 45°.
In (b), the object is first rotated 45° counterclockwise, then translated in the x

direction

(o) .
T Other 2D Transformations

= Reflection

o Transformation that produces a mirror image of an
object ‘

Original
Position

2 3

N

-~ 7
R

Reflected
Position

ym'& . O o
Other 2D Transformations (cont.)

= Reflection

o Image Is generated relative to an axis of reflection
by rotating the object 180° about the reflection

axis
o Reflection about the line y=0 (the x axis) (previous
slide)
sl O
-1 O

o

“TOther 2D Transformations (cont.) =

= Reflection
o Reflection about the line x=0 (the y axis)

——1 O O_ Original Reflected

Position Position

g 2 N S 2
9 e © Bl L |1

= % 3 <

o

“Other 2D Transformations (cont.)

= Reflection about the origin

Reflected
Position

T
0
0

N

0 O
e et
0 1.

l ’

Original
Position

Q
L3
=
<
VERSY

fs

o = O
C O R
OIS

"Other 2D Transformations (cont.)’

Reflection about the line y=x

y =
y 3 Original P
Position 7
7
/7
> &
7
/7
1 .~ Reflected
.71’ Position
4
//
7 ’2’
’)I
/s X

)
-t
e oY
Exun P

o

“Other 2D Transformations (cont.)

= Reflection about the line y=-x

L Reflected
N < Position
051 O]
3’
10 0 i .
L0500 J i
Original
Position 3

o

» & - - p
he o
S ¥

e

“~Other 2D Transformations (cont.)

= Shear

o Transformation that distorts the shape of an object
such that the transformed shape appears as the
object was composed of internal layers that had
been caused to slide over each other

v 1
(0,1) (1,1) S A T

» |
00y . 49 X (00 (L0 X

sh,=2

“TOther 2D Transformations (cont.)

= Shear
o An X-direction shear relative to the x axis

1 sh, 0| x'=x+sh -y

0 0 1

5 An Y- -direction shear relative to the y axis
R 00
sh, 1 O

y

G- 07

“TOther 2D Transformations (cont.)

= Shear
o X-direction shear relative to other reference lines

_1 th bl th 2 Yi -
o e | 0
0O O 1

X'= X+th*(y_ Y ref)

¥ ey,

'Example
! y
(0, 1) (1,1) (1,1) 2,1)
(0,0) (1,0) X (1/2,0) (3/2,0) X
Vrief — = Veef — — Lt

(a) (b)

A unit square (a) is transformed to a shifted parallelogram
(b) with sh, = 0.5 and y,.: = —1 in the shear matrix from Slide 56

" Other 2D Transformations (cont.)

= Shear
0 y-direction shear relative to the line X = X

il 0 Oi i
Sla L ST = X

y

0 O 1

. —

X2
y :x+shy*(x—xref)

(1,1)

(0,1) (1,1)
e I: _1 (0,0) (1, 0)
(a)

A unit square (a) is turned into a shifted parallelogram

(b) with parameter values sh, = 0.5 and X

transformation from Slide 58

(b)

-1 in the y -direction shearing

"TRaster Methods for
Transformations and OpenGL
= This slide Is Iintentionally left blank

= Your responsibility to fill it ©

Transformation Between
Coordinate Systems

= Individual objects may be defined in their
local cartesian reference system.

= The local coordinates must be transformed
to position the objects within the scene
coordinate system.

T Transformation Between
Coordinate Systems

Steps for coordinate transformation

1. Translate so that the origin (X,, Y) of the
X'-y' system is moved to the origin of the
X-y system.

2.Rotate the x’ axis on to the axis Xx.

“TTransformation Between
Coordinate Systems (cont.)

“TTransformation Between
Coordinate Systems (cont.)

A

y

“TTransformation Between
Coordinate Systems (cont.)

A

y

T Transformation Between
Coordinate Systems (cont.)

o e Sty P
T(—Xxo,—Y0)=|0 1 —y,
0 0 1=
Cos@ Sinf@ 0
R(—0) = |—-Sin8 Cosf 0
0 0 1

Mxy,xlyl = R(—0) - T(—x0, —Yo)

T Transformation Between
Coordinate Systems (cont.)

An alternative method:
-Specify a vector V that indicates the direction
for the positive y’ axis. Let

V=—=(V,,V
|V| (x y)

-Obtain the unit vector u=(u, ,u,) along the x’
axis by rotating v 90° clockwise.

T Transformation Between
Coordinate Systems (cont.)

= Elements of any rotation matrix can be
expressed as elements of orthogonal unit
vectors. That Is, the rotation matrix can be
written as

U n,a
R=1lv, v, 0
0o 0 1]

“TTransformation Between
Coordinate Systems (cont.)

O, |
T0OpenGL Geometric

Transformation Functions

= A separate function is available for each of the
basic geometric transformations

AND

= All transformations are specified in three
dimensions

O Why?

= Answer. Remember; OpenGL was developed as
3D library

= But how to perform 2D transformations?
= Answer: Setz=0

w MEy

Ep &
A
w
Oy
QoY

'Basic OpenGL Geometric

Transformations

= Translation
a glTranslate* (tx, ty, tz);

*Is either f or d
tx, ty and tz are any real number
For 2D, set tz=0.0

= Rotation
o glRotate* (theta, vx, vy, vz);

* |s either f or d

theta is rotation angle in degrees (internally converted to
radian)

Vector v=(vx, vy, vz) defines the orientation for a rotation axis
that passes through the coordinate origin

For 2D, set vz=1.0 and vx=vy=0.0

ME

A
\p W

é.@g

L 4 [

7 &y
7 &

L ERss

'Basic OpenGL Geometric

Transformations (cont.)
= Scaling
o glScale* (sx, sy, sz);

*|Is either f or d
SX, Sy and sz are any real number
Negative values generate reflection

Zero values can cause error because inverse matrix
cannot be calculated

= All routines construct a 4x4 transformation
matrix

= OpenGL uses composite matrices
o Be careful with the order

(o) . . {0
10penGL Matrix Operations

= glMatrixMode(.);

o Projection Mode: Determines how the scene is
projected onto the screen

2 Modelview Mode: Used for storing and combining
geometric transformations

o Texture Mode: Used for mapping texture patterns
to surfaces

o Color Mode: Used to convert from one color mode
to another

(v) | .
10penGL Matrix Operations

= Modelview matrix, used to store and combine
geometric transformations

o glMatrixMode(GL_MODELVIEW);

= A call to a transformation routine generates a
matrix that is multiplied by the current matrix

= To assign the identity matrix to the current
matrix

o glLoadldentity();

3
=,
G

i %

e o
o,

(v) | .
10penGL Matrix Operations

(cont.)

= Alternatively:
o glLoadMatrix* (elements16);

o To assign other values to the elements of the
current matrix

2 In column-major order:
= First four elements in first column
= Second four elements in second column
= Third four elements in third column
= Fourth four elements in fourth column

(v) | .
10penGL Matrix Operations

(cont.)

= Concatenating a specified matrix with current
matrix:

o glMultMatrix* (otherElementsi16);

o Current matrix is postmultiplied (right-to-left) by
the specified matrix

= Warning:

= Matrix notation m; means:
o In OpenGL: | = column, k = row
o In mathematics: | = row, k = column

O, .
T0OpenGL Matrix Stacks

= OpenGL maintains a matrix stack for
transformations

= |nitially the modelview stack contains only the
identity matrix

= More about It:
o Coming soon

4 OpenGL Transformation Routines

= For example, assume we want to do in the following
order:
o translate by +2, -3, +4,
o rotate by 459 around axis formed between origin and 1, 1, 1
o scale with respect to the origin by 2 in each direction.

= Our code would be

glMatrixMode(GL_MODELVIEW);

glLoadldentity(); [/start with identity
glScalef(2.0,2.0,2.0); //Note:
glRotatef(45.0,1.0,1.0,1.0);

glTranslatef(2.0,-3.0, 4.0); //

o}

& %'w"-‘

|OpenGL Transformation Functions’

TABLE 7-1

‘f

Summary of OpenGL Geometric Transformation Functions

Function Description
glTranslate* Specifies translation parameters.
glRotate* Specifies parameters for rotation about any axis

through the origin.

glScale* Specifies scaling parameters with respect to
coordinate origin.

glMatrixMode Specifies current matrix for geometric-viewing
transformations, projection transformations,
texture transformations, or color transformations.

glLoadIdentity Sets current matrix to identity.
glLoadMatrix* (elems); Sets elements of current matrix.
glMultMatrix* (elems); Postmultiplies the current matrix by the

specified matrix.

glPixelZoom Specifies two-dimensional scaling parameters for

raster operations.
2D Gegmelhic.t aRs{Qumations 79

Next Lecture

3D Geometric Transformations

O @
T References o

= Donald Hearn, M. Pauline Baker, Warren R.
Carithers, "Computer Graphics with OpenGL, 4th
Edition”; Pearson, 2011

= Sumanta Guha, "Computer Graphics Through
OpenGL: From Theory to Experiments”, CRC Press,
2010

= Edward Angel, “Interactive Computer Graphics. A
Top-Down Approach Using OpenGL”, Addison-
Wesley, 2005

