
CSE 411

Computer Graphics

Lecture #6 2D Geometric Transformations

Prepared & Presented by Asst. Prof. Dr. Samsun M. BAŞARICI

Objectives

 HB Ch. 7, GVS Ch. 3

 Basic 2D Transformations (rigid-body
transformations):

 Translation

 Rotation

 Scaling

 Homogenenous Representations and
Coordinates

 2D Composite Transformations

22D Geometric Transformations

Objectives (cont.)

 Other Transformations:

 Reflection

 Shearing

 Raster Methods for Transformations and
OpenGL

 Transformations between 2D Coordinate
Systems and OpenGL

32D Geometric Transformations

Geometric Transformations

 Sometimes also called modeling

transformations

 Geometric transformations: Changing an object’s

position (translation), orientation (rotation) or size

(scaling)

 Modeling transformations: Constructing a scene

or hierarchical description of a complex object

 Others transformations: reflection and

shearing operations

42D Geometric Transformations

Basic 2D Geometric

Transformations

 2D Translation

 x’ = x + tx , y’ = y + ty

 P’=P+T

 Translation moves the object without deformation

(rigid-body transformation)

P

P’

T

y

x

t

t
T

y

x
P

y

x
P ,

'

'
',

52D Geometric Transformations

Basic 2D Geometric

Transformations (cont.)

 2D Translation

 To move a line segment, apply the transformation

equation to each of the two line endpoints and

redraw the line between new endpoints

 To move a polygon, apply the transformation

equation to coordinates of each vertex and

regenerate the polygon using the new set of vertex

coordinates

62D Geometric Transformations

2D Translation Routine

class wcPt2D {

public:

GLfloat x, y;

};

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)

{

GLint k;

for (k = 0; k < nVerts; k++) {

verts [k].x = verts [k].x + tx;

verts [k].y = verts [k].y + ty;

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (verts [k].x, verts [k].y);

glEnd ();

}

72D Geometric Transformations

 2D Rotation

 Rotation axis

 Rotation angle

 rotation point or pivot point (xr,yr)

yr

xr

θ

Basic 2D Geometric

Transformations (cont.)

82D Geometric Transformations

 2D Rotation
 If θ is positive counterclockwise rotation

 If θ is negative clockwise rotation

 Remember:
 cos(a + b) = cos a cos b - sin a sin b

 cos(a - b) = cos a sin b + sin a cos b

Basic 2D Geometric

Transformations (cont.)

92D Geometric Transformations

 2D Rotation

 At first, suppose the pivot point is at the origin

 x’=r cos(θ+Φ) = r cos θ cos Φ - r sin θ sin Φ

y’=r sin(θ+Φ) = r cos θ sin Φ + r sin θ cos Φ

 x = r cos Φ, y = r sin Φ

 x’=x cos θ - y sin θ

y’=x sin θ + y cos θ

Φ

(x,y)r
r θ

(x’,y’)

Basic 2D Geometric

Transformations (cont.)

102D Geometric Transformations

Basic 2D Geometric

Transformations

 2D Rotation

 P’=R·P

cossin

sincos
R

Φ

(x,y)r
r θ

(x’,y’)

112D Geometric Transformations

 2D Rotation
 Rotation of a point about any specified position

(xr,yr)

x’=xr+(x - xr) cos θ – (y - yr) sin θ

y’=yr+(x - xr) sin θ + (y - yr) cos θ

 Rotations also move objects without deformation

 A line is rotated by applying the rotation formula to
each of the endpoints and redrawing the line
between the new end points

 A polygon is rotated by applying the rotation
formula to each of the vertices and redrawing the
polygon using new vertex coordinates

Basic 2D Geometric

Transformations (cont.)

122D Geometric Transformations

2D Rotation Routine

class wcPt2D {

public:

GLfloat x, y;

};

void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt, GLdouble theta)

{

wcPt2D * vertsRot;

GLint k;

for (k = 0; k < nVerts; k++) {

vertsRot [k].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta) - (verts [k].y - pivPt.y) *
sin (theta);

vertsRot [k].y = pivPt.y + (verts [k].x - pivPt.x) * sin (theta) + (verts [k].y - pivPt.y) *
cos (theta);

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (vertsRot [k].x, vertsRot [k].y);

glEnd ();

} 132D Geometric Transformations

 2D Scaling

 Scaling is used to alter the size of an object

 Simple 2D scaling is performed by multiplying

object positions (x, y) by scaling factors sx and sy

x’ = x · sx

y’ = y · sx

or P’ = S·P

y

x

s

s

y

x

y

x

0

0

'

'

Basic 2D Geometric

Transformations (cont.)

142D Geometric Transformations

 2D Scaling

 Any positive value can be used as scaling factor

 Values less than 1 reduce the size of the object

 Values greater than 1 enlarge the object

 If scaling factor is 1 then the object stays unchanged

 If sx = sy , we call it uniform scaling

 If scaling factor <1, then the object moves closer to the

origin and If scaling factor >1, then the object moves

farther from the origin

x’ x

Basic 2D Geometric

Transformations (cont.)

152D Geometric Transformations

 2D Scaling

 Why does scaling also reposition object?

 Answer: See the matrix (multiplication)

 Still no clue?

𝑥′
𝑦′

=
𝑠𝑥 0
0 𝑠𝑦

∗
𝑥
𝑦 =

𝑥 ∗ 𝑠𝑥 + 𝑦 ∗ 0
𝑥 ∗ 0 + 𝑦 ∗ 𝑠𝑦

Basic 2D Geometric

Transformations (cont.)

162D Geometric Transformations

 2D Scaling

 We can control the location of the scaled object by

choosing a position called the fixed point (xf,yf)

x’ – xf = (x – xf) sx y’ – yf = (y – yf) sy

x’=x · sx + xf (1 – sx)

y’=y · sy + yf (1 – sy)

 Polygons are scaled by applying the above formula

to each vertex, then regenerating the polygon using

the transformed vertices

Basic 2D Geometric

Transformations (cont.)

172D Geometric Transformations

2D Scaling Routine

class wcPt2D {

public:

GLfloat x, y;

};

void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt, GLfloat sx,

GLfloat sy)

{

wcPt2D vertsNew;

GLint k;

for (k = 0; k < n; k++) {

vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx);

vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy);

}

glBegin (GL_POLYGON);

for (k = 0; k < n; k++)

glVertex2v (vertsNew [k].x, vertsNew [k].y);

glEnd ();

}
182D Geometric Transformations

Matrix Representations and

Homogeneous Coordinates
 Many graphics applications involve

sequences of geometric transformations

 Animations

 Design and picture construction applications

 We will now consider matrix representations

of these operations

 Sequences of transformations can be efficiently

processed using matrices

192D Geometric Transformations

Matrix Representations and

Homogeneous Coordinates (cont.)
 P’ = M1 · P + M2

 P and P’ are column vectors

 M1 is a 2 by 2 array containing multiplicative

factors

 M2 is a 2 element column matrix containing

translational terms

 For translation M1 is the identity matrix

 For rotation or scaling, M2 contains the

translational terms associated with the pivot point

or scaling fixed point

202D Geometric Transformations

 To produce a sequence of operations, such

as scaling followed by rotation then

translation, we could calculate the

transformed coordinates one step at a time

 A more efficient approach is to combine

transformations, without calculating

intermediate coordinate values

Matrix Representations and

Homogeneous Coordinates (cont.)

212D Geometric Transformations

 Multiplicative and translational terms for a 2D

geometric transformation can be combined

into a single matrix if we expand the

representations to 3 by 3 matrices

 We can use the third column for translation terms,

and all transformation equations can be

expressed as matrix multiplications

Matrix Representations and

Homogeneous Coordinates (cont.)

222D Geometric Transformations

 Expand each 2D coordinate (x,y) to three

element representation (xh,yh,h) called

homogeneous coordinates

 h is the homogeneous parameter such that

x = xh/h, y = yh/h,

 infinite homogeneous representations for a

point

 A convenient choice is to choose h = 1

Matrix Representations and

Homogeneous Coordinates (cont.)

232D Geometric Transformations

 2D Translation Matrix

or, P’ = T(tx,ty)·P

1100

10

01

1

'

'

y

x

t

t

y

x

y

x

Matrix Representations and

Homogeneous Coordinates (cont.)

242D Geometric Transformations

 2D Rotation Matrix

or, P’ = R(θ)·P

1100

0cossin

0sincos

1

'

'

y

x

y

x

Matrix Representations and

Homogeneous Coordinates (cont.)

252D Geometric Transformations

 2D Scaling Matrix

or, P’ = S(sx,sy)·P

1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Matrix Representations and

Homogeneous Coordinates (cont.)

262D Geometric Transformations

Inverse Transformations

 2D Inverse Translation Matrix

 By the way:

100

10

01
1

y

x

t

t

T

ITT *1

272D Geometric Transformations

Inverse Transformations (cont.)

 2D Inverse Rotation Matrix

 And also:

100

0cossin

0sincos
1R

IRR *1

282D Geometric Transformations

Inverse Transformations (cont.)

 2D Inverse Rotation Matrix:

 If θ is negative clockwise

 In

 Only sine function is affected

 Therefore we can say

 Is that true?

 Proof: It’s up to you

IRR *1

TRR 1

292D Geometric Transformations

Inverse Transformations (cont.)

 2D Inverse Scaling Matrix

 Of course:

100

0
1

0

00
1

1

y

x

s

s

S

ISS *1

302D Geometric Transformations

2D Composite Transformations

 We can setup a sequence of transformations

as a composite transformation matrix by

calculating the product of the individual

transformations

 P’=M2·M1·P

=M·P

312D Geometric Transformations

2D Composite Transformations

(cont.)

 Composite 2D Translations

 If two successive translation are applied to a point P,

then the final transformed location P' is calculated as

100

10

01

100

10

01

100

10

01

21

21

1

1

2

2

yy

xx

y

x

y

x

tt

tt

t

t

t

t

PTPTTP),(),(),('
21211122 yyxxyxyx tttttttt

322D Geometric Transformations

 Composite 2D Rotations

100

0)cos()sin(

0)sin()cos(

100

0cossin

0sincos

100

0cossin

0sincos

2121

2121

11

11

22

22

PRP)(' 21

2D Composite Transformations

(cont.)

332D Geometric Transformations

 Composite 2D Scaling

100

00

00

100

00

00

100

00

00

21

21

1

1

2

2

yy

xx

y

x

y

x

ss

ss

s

s

s

s

),(),(),(
21211122 yyxxyxyx ssssssss SSS

2D Composite Transformations

(cont.)

342D Geometric Transformations

 Don’t forget:

 Successive translations are additive

 Successive scalings are multiplicative

 For example: If we triple the size of an object

twice, the final size is nine (9) times the original

 9 times?

 Why?

 Proof: Again up to you

2D Composite Transformations

(cont.)

352D Geometric Transformations

General Pivot Point Rotation

 Steps:

1. Translate the object so that the pivot point is

moved to the coordinate origin.

2. Rotate the object about the origin.

3. Translate the object so that the pivot point is

returned to its original position.

362D Geometric Transformations

General Pivot Point Rotation

372D Geometric Transformations

 General 2D Pivot-Point Rotation

100

10

01

100

0cossin

0sincos

100

10

01

r

r

r

r

y

x

y

x

100

sin)cos1(cossin

sin)cos1(sincos

rr

rr

xy

yx

2D Composite Transformations

(cont.)

382D Geometric Transformations

General Fixed Point Scaling

 Steps:

1. Translate the object so that the fixed point

coincides with the coordinate origin.

2. Scale the object about the origin.

3. Translate the object so that the pivot point is

returned to its original position.

392D Geometric Transformations

General Fixed Point Scaling

(cont.)

(xr, yr) (xr, yr)

402D Geometric Transformations

1 0 𝑥𝑓
0 1 𝑦𝑓
0 0 1

.
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

.

1 0 − 𝑥𝑓
0 1 − 𝑦𝑓
0 0 1

=

𝑠𝑥 0 𝑥𝑓(1 − 𝑠𝑥)

0 𝑠𝑦 𝑦𝑓(1 − 𝑠𝑦)

0 0 1

𝐓(𝑥𝑓 , 𝑦𝑓) ⋅ 𝐒(𝑠𝑥, 𝑠𝑦) ⋅ 𝐓(−𝑥𝑓 , −𝑦𝑓) = 𝐒(𝑥𝑓 , 𝑦𝑓, 𝑠𝑥, 𝑠𝑦)

• General 2D Fixed-Point Scaling:

General Fixed Point Scaling

(cont.)

412D Geometric Transformations

2D Composite Transformations

(cont.)

 General 2D scaling directions:

 Above: scaling parameters were along x and y

directions

 What about arbitrary directions?

 Answer: See next slides

422D Geometric Transformations

General 2D Scaling Directions

Scaling parameters s1 and s2 along orthogonal directions defined by the

angular displacement θ. 432D Geometric Transformations

General 2D Scaling Directions

(cont.)

 General procedure:

1. Rotate so that directions coincides with x and y

axes

2. Apply scaling transformation 𝑆 𝑠1, 𝑠2
3. Rotate back

 The composite matrix:

𝑅−1 Θ ∗ 𝑆 𝑠1, 𝑠2 ∗ 𝑅 Θ =
𝑠1 cos

2 Θ + 𝑠2 sin
2 Θ 𝑠2 − 𝑠1 cosΘ sinΘ 0

𝑠2 − 𝑠1 cosΘ sinΘ 𝑠1sin
2 Θ + 𝑠2 cos

2 Θ 0
0 0 1

442D Geometric Transformations

2D Composite Transformations

(cont.)

 Matrix Concatenation Properties:

 Matrix multiplication is associative !

 M3· M2· M1= (M3· M2) · M1 = M3· (M2 · M1)

 A composite matrix can be created by multiplicating left-

to-right (premultiplication) or right-to-left

(postmultiplication)

 Matrix multiplication is not commutative !

 M2 · M1 ≠ M1 · M2

452D Geometric Transformations

2D Composite Transformations

(cont.)

 Matrix Concatenation Properties:
 But:

 Two successive rotations

 Two successive translations

 Two successive scalings

 are commutative!

 Why?

 Proof: You got it: Up to you

462D Geometric Transformations

Reversing the order

in which a sequence of transformations is performed may affect the transformed

position of an object.

In (a), an object is first translated in the x direction, then rotated counterclockwise

through an angle of 45°.

In (b), the object is first rotated 45° counterclockwise, then translated in the x

direction
472D Geometric Transformations

Other 2D Transformations

 Reflection

 Transformation that produces a mirror image of an

object

482D Geometric Transformations

 Reflection

 Image is generated relative to an axis of reflection

by rotating the object 180° about the reflection

axis

 Reflection about the line y=0 (the x axis) (previous

slide)

100

010

001

Other 2D Transformations (cont.)

492D Geometric Transformations

Other 2D Transformations (cont.)

 Reflection

 Reflection about the line x=0 (the y axis)

100

010

001

502D Geometric Transformations

−1 0 0
0 − 1 0
0 0 1

 Reflection about the origin

Other 2D Transformations (cont.)

512D Geometric Transformations

 Reflection about the line y=x

0 1 0
1 0 0
0 0 1

Other 2D Transformations (cont.)

522D Geometric Transformations

 Reflection about the line y=-x

0 − 1 0
−1 0 0
0 0 1

Other 2D Transformations (cont.)

532D Geometric Transformations

 Shear

 Transformation that distorts the shape of an object

such that the transformed shape appears as the

object was composed of internal layers that had

been caused to slide over each other

y

x

(0,1) (1,1)

(1,0)(0,0)

y

x

(2,1) (3,1)

(1,0)(0,0)
shx=2

Other 2D Transformations (cont.)

542D Geometric Transformations

 Shear

 An x-direction shear relative to the x axis

 An y-direction shear relative to the y axis

100

01

001

ysh

100

010

01 xsh

yy

yshxx x

'

'

Other 2D Transformations (cont.)

552D Geometric Transformations

 Shear

 x-direction shear relative to other reference lines

100

010

*1 refxx yshsh

yy

yyshxx refx

'

*'

Other 2D Transformations (cont.)

562D Geometric Transformations

Example

A unit square (a) is transformed to a shifted parallelogram

(b) with shx = 0.5 and yref = −1 in the shear matrix from Slide 56

572D Geometric Transformations

 Shear

 y-direction shear relative to the line x = xref

100

*1

001

refyy xshsh

 refy xxshxy

xx

*'

'

Other 2D Transformations (cont.)

582D Geometric Transformations

Example

A unit square (a) is turned into a shifted parallelogram

(b) with parameter values shy = 0.5 and xref = −1 in the y -direction shearing

transformation from Slide 58

592D Geometric Transformations

 This slide is intentionally left blank

 Your responsibility to fill it

Raster Methods for
Transformations and OpenGL

602D Geometric Transformations

Transformation Between

Coordinate Systems

 Individual objects may be defined in their

local cartesian reference system.

 The local coordinates must be transformed

to position the objects within the scene

coordinate system.

612D Geometric Transformations

Steps for coordinate transformation

1. Translate so that the origin (x0, y0) of the

x′-y′ system is moved to the origin of the

x-y system.

2.Rotate the x′ axis on to the axis x.

Transformation Between

Coordinate Systems

622D Geometric Transformations

y

x

θ

x0

y0

0

Transformation Between

Coordinate Systems (cont.)

632D Geometric Transformations

y

xx0

y0

0

θ

Transformation Between

Coordinate Systems (cont.)

642D Geometric Transformations

y

xx′ x0

y0

0

y′

Transformation Between

Coordinate Systems (cont.)

652D Geometric Transformations

𝐓(−𝑥0, −𝑦0) =
1 0 − 𝑥0
0 1 − 𝑦0
0 0 1

𝐑(−𝜃) =
𝐶𝑜𝑠𝜃 𝑆𝑖𝑛𝜃 0
−𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝜃 0
0 0 1

𝐌𝑥𝑦,𝑥′𝑦′ = 𝐑(−𝜃) ⋅ 𝐓(−𝑥0, −𝑦0)

Transformation Between

Coordinate Systems (cont.)

662D Geometric Transformations

An alternative method:

-Specify a vector V that indicates the direction

for the positive y′ axis. Let

-Obtain the unit vector u=(ux ,u y) along the x′
axis by rotating v 900 clockwise.

𝐯 =
𝐕

𝐕
= (𝑣𝑥, 𝑣𝑦)

Transformation Between

Coordinate Systems (cont.)

672D Geometric Transformations

 Elements of any rotation matrix can be

expressed as elements of orthogonal unit

vectors. That is, the rotation matrix can be

written as

𝐑 =

𝑢𝑥 𝑢𝑦 0

𝑣𝑥 𝑣𝑦 0

0 0 1

Transformation Between

Coordinate Systems (cont.)

682D Geometric Transformations

y

xx0

y0

0

V

Transformation Between

Coordinate Systems (cont.)

692D Geometric Transformations

OpenGL Geometric

Transformation Functions
 A separate function is available for each of the

basic geometric transformations

AND

 All transformations are specified in three

dimensions

 Why?

 Answer: Remember; OpenGL was developed as

3D library

 But how to perform 2D transformations?

 Answer: Set z = 0
702D Geometric Transformations

Basic OpenGL Geometric

Transformations
 Translation

 glTranslate* (tx, ty, tz);
 * is either f or d

 tx, ty and tz are any real number

 For 2D, set tz=0.0

 Rotation
 glRotate* (theta, vx, vy, vz);

 * is either f or d

 theta is rotation angle in degrees (internally converted to
radian)

 Vector v=(vx, vy, vz) defines the orientation for a rotation axis
that passes through the coordinate origin

 For 2D, set vz=1.0 and vx=vy=0.0

712D Geometric Transformations

Basic OpenGL Geometric

Transformations (cont.)
 Scaling

 glScale* (sx, sy, sz);
 * is either f or d

 sx, sy and sz are any real number

 Negative values generate reflection

 Zero values can cause error because inverse matrix
cannot be calculated

 All routines construct a 4x4 transformation
matrix

 OpenGL uses composite matrices

 Be careful with the order
722D Geometric Transformations

OpenGL Matrix Operations

 glMatrixMode(.);

 Projection Mode: Determines how the scene is

projected onto the screen

 Modelview Mode: Used for storing and combining

geometric transformations

 Texture Mode: Used for mapping texture patterns

to surfaces

 Color Mode: Used to convert from one color mode

to another

732D Geometric Transformations

OpenGL Matrix Operations

 Modelview matrix, used to store and combine

geometric transformations

 glMatrixMode(GL_MODELVIEW);

 A call to a transformation routine generates a

matrix that is multiplied by the current matrix

 To assign the identity matrix to the current

matrix

 glLoadIdentity();

742D Geometric Transformations

OpenGL Matrix Operations

(cont.)
 Alternatively:

 glLoadMatrix* (elements16);

 To assign other values to the elements of the

current matrix

 In column-major order:

 First four elements in first column

 Second four elements in second column

 Third four elements in third column

 Fourth four elements in fourth column

752D Geometric Transformations

OpenGL Matrix Operations

(cont.)
 Concatenating a specified matrix with current

matrix:

 glMultMatrix* (otherElements16);

 Current matrix is postmultiplied (right-to-left) by

the specified matrix

 Warning:

 Matrix notation mjk means:

 In OpenGL: j column, k row

 In mathematics: j row, k column
762D Geometric Transformations

OpenGL Matrix Stacks

 OpenGL maintains a matrix stack for
transformations

 Initially the modelview stack contains only the
identity matrix

 More about it:
 Coming soon

772D Geometric Transformations

OpenGL Transformation Routines

 For example, assume we want to do in the following
order:
 translate by +2, -3, +4,

 rotate by 450 around axis formed between origin and 1, 1, 1

 scale with respect to the origin by 2 in each direction.

 Our code would be

glMatrixMode(GL_MODELVIEW);

glLoadIdentity(); //start with identity

glScalef(2.0,2.0,2.0); //Note: Start with the LAST operation

glRotatef(45.0,1.0,1.0,1.0);

glTranslatef(2.0,-3.0, 4.0); //End with the FIRST operation

782D Geometric Transformations

OpenGL Transformation Functions

792D Geometric Transformations

Next Lecture

3D Geometric Transformations

80

References

 Donald Hearn, M. Pauline Baker, Warren R.

Carithers, “Computer Graphics with OpenGL, 4th

Edition”; Pearson, 2011

 Sumanta Guha, “Computer Graphics Through

OpenGL: From Theory to Experiments”, CRC Press,

2010

 Edward Angel, “Interactive Computer Graphics. A

Top-Down Approach Using OpenGL”, Addison-

Wesley, 2005

81

