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Objectives

 HB Ch. 7, GVS Ch. 3

 Basic 2D Transformations (rigid-body 
transformations):

 Translation

 Rotation

 Scaling

 Homogenenous Representations and 
Coordinates

 2D Composite Transformations
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Objectives (cont.)

 Other Transformations: 

 Reflection 

 Shearing

 Raster Methods for Transformations and 
OpenGL

 Transformations between 2D Coordinate 
Systems and OpenGL
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Geometric Transformations

 Sometimes also called modeling 

transformations

 Geometric transformations: Changing an object’s 

position (translation), orientation (rotation) or size 

(scaling)

 Modeling transformations: Constructing a scene 

or hierarchical description of a complex object

 Others transformations: reflection and 

shearing operations
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Basic 2D Geometric 

Transformations

 2D Translation

 x’ = x + tx , y’ = y + ty

 P’=P+T

 Translation moves the object without deformation 

(rigid-body transformation)
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Basic 2D Geometric 

Transformations (cont.)

 2D Translation

 To move a line segment, apply the transformation 

equation to each of the two line endpoints and 

redraw the line between new endpoints

 To move a polygon, apply the transformation 

equation to coordinates of each vertex and 

regenerate the polygon using the new set of vertex 

coordinates
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2D Translation Routine

class wcPt2D {

public:

GLfloat x, y;

};

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)

{

GLint k;

for (k = 0; k < nVerts; k++) {

verts [k].x = verts [k].x + tx;

verts [k].y = verts [k].y + ty;

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (verts [k].x, verts [k].y);

glEnd ( );

}
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 2D Rotation

 Rotation axis

 Rotation angle

 rotation point or pivot point (xr,yr)

yr

xr

θ

Basic 2D Geometric 

Transformations (cont.)
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 2D Rotation
 If θ is positive  counterclockwise rotation

 If θ is negative  clockwise rotation

 Remember:
 cos(a + b) = cos a cos b - sin a sin b

 cos(a - b) = cos a sin b + sin a cos b

Basic 2D Geometric 

Transformations (cont.)
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 2D Rotation

 At first, suppose the pivot point is at the origin

 x’=r cos(θ+Φ) = r cos θ cos Φ - r sin θ sin Φ

y’=r sin(θ+Φ) = r cos θ sin Φ + r sin θ cos Φ

 x = r cos Φ, y = r sin Φ

 x’=x cos θ - y sin θ

y’=x sin θ + y cos θ

Φ

(x,y)r
r θ

(x’,y’)

Basic 2D Geometric 

Transformations (cont.)
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Basic 2D Geometric 

Transformations

 2D Rotation

 P’=R·P
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 2D Rotation
 Rotation of a point about any specified position 

(xr,yr) 

x’=xr+(x - xr) cos θ – (y - yr) sin θ

y’=yr+(x - xr) sin θ + (y - yr) cos θ

 Rotations also move objects without deformation

 A line is rotated by applying the rotation formula to 
each of the endpoints and redrawing the line 
between the new end points

 A polygon is rotated by applying the rotation 
formula to each of the vertices and redrawing the 
polygon using new vertex coordinates

Basic 2D Geometric 

Transformations (cont.)

122D Geometric Transformations



2D Rotation Routine

class wcPt2D {

public:

GLfloat x, y;

};

void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt, GLdouble theta)

{

wcPt2D * vertsRot;

GLint k;

for (k = 0; k < nVerts; k++) {

vertsRot [k].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta) - (verts [k].y - pivPt.y) * 
sin (theta);

vertsRot [k].y = pivPt.y + (verts [k].x - pivPt.x) * sin (theta) + (verts [k].y - pivPt.y) * 
cos (theta);

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (vertsRot [k].x, vertsRot [k].y);

glEnd ( );
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 2D Scaling

 Scaling is used to alter the size of an object

 Simple 2D scaling is performed by multiplying 

object positions (x, y) by scaling factors sx and sy

x’ = x · sx

y’ = y · sx

or P’ = S·P
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Basic 2D Geometric 

Transformations (cont.)
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 2D Scaling

 Any positive value can be used as scaling factor 

 Values less than 1 reduce the size of the object

 Values greater than 1 enlarge the object

 If scaling factor is 1 then the object stays unchanged

 If sx = sy , we call it uniform scaling

 If scaling factor <1, then the object moves closer to the 

origin and If scaling factor >1, then the object moves 

farther from the origin

x’ x

Basic 2D Geometric 

Transformations (cont.)
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 2D Scaling

 Why does scaling also reposition object?

 Answer: See the matrix (multiplication)

 Still no clue?



𝑥′
𝑦′

=
𝑠𝑥 0
0 𝑠𝑦

∗
𝑥
𝑦 =

𝑥 ∗ 𝑠𝑥 + 𝑦 ∗ 0
𝑥 ∗ 0 + 𝑦 ∗ 𝑠𝑦

Basic 2D Geometric 

Transformations (cont.)
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 2D Scaling

 We can control the location of the scaled object by 

choosing a position called the fixed point (xf,yf)

x’ – xf = (x – xf) sx y’ – yf = (y – yf) sy

x’=x · sx + xf (1 – sx)

y’=y · sy + yf (1 – sy)

 Polygons are scaled by applying the above formula 

to each vertex, then regenerating the polygon using 

the transformed vertices

Basic 2D Geometric 

Transformations (cont.)
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2D Scaling Routine

class wcPt2D {

public:

GLfloat x, y;

};

void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt, GLfloat sx, 

GLfloat sy)

{

wcPt2D vertsNew;

GLint k;

for (k = 0; k < n; k++) {

vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx);

vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy);

}

glBegin (GL_POLYGON);

for (k = 0; k < n; k++)

glVertex2v (vertsNew [k].x, vertsNew [k].y);

glEnd ( );

}
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Matrix Representations and 

Homogeneous Coordinates
 Many graphics applications involve 

sequences of geometric transformations

 Animations

 Design and picture construction applications

 We will now consider matrix representations 

of these operations

 Sequences of transformations can be efficiently 

processed using matrices
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Matrix Representations and 

Homogeneous Coordinates (cont.)
 P’ = M1 · P + M2

 P and P’ are column vectors

 M1 is a 2 by 2 array containing multiplicative 

factors

 M2 is a 2 element column matrix containing 

translational terms

 For translation M1 is the identity matrix

 For rotation or scaling, M2 contains the 

translational terms associated with the pivot point 

or scaling fixed point
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 To produce a sequence of operations, such 

as scaling followed by rotation then 

translation, we could calculate the 

transformed coordinates one step at a time

 A more efficient approach is to combine 

transformations, without calculating 

intermediate coordinate values

Matrix Representations and 

Homogeneous Coordinates (cont.)
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 Multiplicative and translational terms for a 2D 

geometric transformation can be combined 

into a single matrix if we expand the 

representations to 3 by 3 matrices

 We can use the third column for translation terms, 

and all transformation equations can be 

expressed as matrix multiplications

Matrix Representations and 

Homogeneous Coordinates (cont.)
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 Expand each 2D coordinate (x,y) to three 

element representation (xh,yh,h) called 

homogeneous coordinates

 h is the homogeneous parameter such that 

x = xh/h, y = yh/h,

  infinite homogeneous representations for a 

point

 A convenient choice is to choose h = 1

Matrix Representations and 

Homogeneous Coordinates (cont.)
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 2D Translation Matrix

or, P’ = T(tx,ty)·P
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Matrix Representations and 

Homogeneous Coordinates (cont.)
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 2D Rotation Matrix

or, P’ = R(θ)·P
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Matrix Representations and 

Homogeneous Coordinates (cont.)
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 2D Scaling Matrix

or, P’ = S(sx,sy)·P
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Matrix Representations and 

Homogeneous Coordinates (cont.)
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Inverse Transformations

 2D Inverse Translation Matrix

 By the way:
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Inverse Transformations (cont.)

 2D Inverse Rotation Matrix

 And also:
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Inverse Transformations (cont.)

 2D Inverse Rotation Matrix:

 If θ is negative  clockwise 

 In 

 Only sine function is affected

 Therefore we can say

 Is that true?

 Proof: It’s up to you 

IRR  *1

TRR 1
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Inverse Transformations (cont.)

 2D Inverse Scaling Matrix

 Of course:
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2D Composite Transformations

 We can setup a sequence of transformations 

as a composite transformation matrix by 

calculating the product of the individual 

transformations

 P’=M2·M1·P

=M·P
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2D Composite Transformations

(cont.)

 Composite 2D Translations

 If two successive translation are applied to a point P, 

then the final transformed location P' is calculated as
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 Composite 2D Rotations
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2D Composite Transformations

(cont.)
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 Composite 2D Scaling
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2D Composite Transformations

(cont.)
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 Don’t forget:

 Successive translations are additive

 Successive scalings are multiplicative

 For example: If we triple the size of an object 

twice, the final size is nine (9) times the original

 9 times?

 Why?

 Proof: Again up to you 

2D Composite Transformations

(cont.)
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General Pivot Point Rotation

 Steps:

1. Translate the object so that the pivot point is 

moved to the coordinate origin.

2. Rotate the object about the origin.

3. Translate the object so that the pivot point is 

returned to its original position.

362D Geometric Transformations



General Pivot Point Rotation

372D Geometric Transformations



 General 2D Pivot-Point Rotation
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2D Composite Transformations

(cont.)
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General Fixed Point Scaling

 Steps:

1. Translate the object so that the fixed point 

coincides with the coordinate origin.

2. Scale the object about the origin.

3. Translate the object so that the pivot point is 

returned to its original position.
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General Fixed Point  Scaling 

(cont.)

(xr, yr) (xr, yr)
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1 0 𝑥𝑓
0 1 𝑦𝑓
0 0 1

.
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

.

1 0 − 𝑥𝑓
0 1 − 𝑦𝑓
0 0 1

=

𝑠𝑥 0 𝑥𝑓(1 − 𝑠𝑥)

0 𝑠𝑦 𝑦𝑓(1 − 𝑠𝑦)

0 0 1

𝐓(𝑥𝑓 , 𝑦𝑓) ⋅ 𝐒(𝑠𝑥, 𝑠𝑦) ⋅ 𝐓(−𝑥𝑓 , −𝑦𝑓) = 𝐒(𝑥𝑓 , 𝑦𝑓, 𝑠𝑥, 𝑠𝑦)

• General 2D Fixed-Point Scaling:

General Fixed Point  Scaling 

(cont.)
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2D Composite Transformations

(cont.)

 General 2D scaling directions:

 Above: scaling parameters were along x and y

directions

 What about arbitrary directions?

 Answer: See next slides 
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General 2D Scaling Directions

Scaling parameters s1 and s2 along orthogonal directions defined by the 

angular displacement θ. 432D Geometric Transformations



General 2D Scaling Directions 

(cont.)

 General procedure:

1. Rotate so that directions coincides with x and y

axes

2. Apply scaling transformation 𝑆 𝑠1, 𝑠2
3. Rotate back

 The composite matrix:

𝑅−1 Θ ∗ 𝑆 𝑠1, 𝑠2 ∗ 𝑅 Θ =
𝑠1 cos

2 Θ + 𝑠2 sin
2 Θ 𝑠2 − 𝑠1 cosΘ sinΘ 0

𝑠2 − 𝑠1 cosΘ sinΘ 𝑠1sin
2 Θ + 𝑠2 cos

2 Θ 0
0 0 1
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2D Composite Transformations

(cont.)

 Matrix Concatenation Properties:

 Matrix multiplication is associative !

 M3· M2· M1= (M3· M2 ) · M1 = M3· ( M2 · M1 )

 A composite matrix can be created by multiplicating left-

to-right (premultiplication) or right-to-left 

(postmultiplication)

 Matrix multiplication is not commutative ! 

 M2 · M1 ≠ M1 · M2
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2D Composite Transformations

(cont.)

 Matrix Concatenation Properties:
 But:

 Two successive rotations

 Two successive translations

 Two successive scalings 

 are commutative!

 Why?

 Proof: You got it: Up to you  
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Reversing the order

in which a sequence of transformations is performed may affect the transformed 

position of an object. 

In (a), an object is first translated in the x direction, then rotated counterclockwise 

through an angle of 45°. 

In (b), the object is first rotated 45° counterclockwise, then translated in the x

direction
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Other 2D Transformations

 Reflection

 Transformation that produces a mirror image of an 

object
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 Reflection 

 Image is generated relative to an axis of reflection 

by rotating the object 180° about the reflection 

axis

 Reflection about the line y=0 (the x axis) (previous 

slide)
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Other 2D Transformations (cont.)
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Other 2D Transformations (cont.)

 Reflection

 Reflection about the line x=0 (the y axis)
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−1 0 0
0 − 1 0
0 0 1

 Reflection about the origin

Other 2D Transformations (cont.)
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 Reflection about the line y=x

0 1 0
1 0 0
0 0 1

Other 2D Transformations (cont.)
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 Reflection about the line y=-x

0 − 1 0
−1 0 0
0 0 1

Other 2D Transformations (cont.)
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 Shear

 Transformation that distorts the shape of an object 

such that the transformed shape appears as the 

object was composed of internal layers that had 

been caused to slide over each other

y

x

(0,1) (1,1)

(1,0)(0,0)

y

x

(2,1) (3,1)

(1,0)(0,0)
shx=2

Other 2D Transformations (cont.)
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 Shear

 An x-direction shear relative to the x axis 

 An y-direction shear relative to the y axis
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Other 2D Transformations (cont.)
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 Shear

 x-direction shear relative to other reference lines
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Other 2D Transformations (cont.)
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Example

A unit square (a) is transformed to a shifted parallelogram 

(b) with shx = 0.5 and yref = −1 in the shear matrix from Slide 56
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 Shear

 y-direction shear relative to the line x = xref
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Other 2D Transformations (cont.)
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Example

A unit square (a) is turned into a shifted parallelogram 

(b) with parameter values shy = 0.5 and xref = −1 in the y -direction shearing 

transformation from Slide 58

592D Geometric Transformations



 This slide is intentionally left blank

 Your responsibility to fill it 

Raster Methods for 
Transformations and OpenGL
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Transformation Between 

Coordinate Systems

 Individual objects may be defined in their 

local cartesian reference system.

 The local coordinates must be transformed 

to position the objects within the scene 

coordinate system.
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Steps for coordinate transformation

1. Translate so that the origin (x0, y0 ) of the 

x′-y′ system is moved to the origin of  the 

x-y system.

2.Rotate the x′ axis on to the axis x.

Transformation Between 

Coordinate Systems
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y

x

θ

x0

y0

0

Transformation Between 

Coordinate Systems (cont.)
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y

xx0

y0

0

θ

Transformation Between 

Coordinate Systems (cont.)
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y

xx′ x0

y0

0

y′

Transformation Between 

Coordinate Systems (cont.)
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𝐓(−𝑥0, −𝑦0) =
1 0 − 𝑥0
0 1 − 𝑦0
0 0 1

𝐑(−𝜃) =
𝐶𝑜𝑠𝜃 𝑆𝑖𝑛𝜃 0
−𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝜃 0
0 0 1

𝐌𝑥𝑦,𝑥′𝑦′ = 𝐑(−𝜃) ⋅ 𝐓(−𝑥0, −𝑦0)

Transformation Between 

Coordinate Systems (cont.)
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An alternative method:

-Specify a vector V that indicates the direction

for the positive y′ axis. Let

-Obtain the unit vector u=(ux ,u y) along the x′ 
axis by rotating v 900 clockwise.

𝐯 =
𝐕

𝐕
= (𝑣𝑥, 𝑣𝑦)

Transformation Between 

Coordinate Systems (cont.)
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 Elements of any rotation matrix can be 

expressed as elements of orthogonal unit 

vectors. That is, the rotation matrix can be 

written as

𝐑 =

𝑢𝑥 𝑢𝑦 0

𝑣𝑥 𝑣𝑦 0

0 0 1

Transformation Between 

Coordinate Systems (cont.)
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y

xx0

y0

0

V

Transformation Between 

Coordinate Systems (cont.)
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OpenGL Geometric 

Transformation Functions
 A separate function is available for each of the 

basic geometric transformations 

AND

 All transformations are specified in three

dimensions

 Why?

 Answer: Remember; OpenGL was developed as 

3D library

 But how to perform 2D transformations?

 Answer: Set z = 0
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Basic OpenGL Geometric 

Transformations
 Translation

 glTranslate* (tx, ty, tz);
 * is either f or d

 tx, ty and tz are any real number

 For 2D, set tz=0.0

 Rotation
 glRotate* (theta, vx, vy, vz);

 * is either f or d

 theta is rotation angle in degrees (internally converted to 
radian)

 Vector v=(vx, vy, vz) defines the orientation for a rotation axis 
that passes through the coordinate origin

 For 2D, set vz=1.0 and vx=vy=0.0

712D Geometric Transformations



Basic OpenGL Geometric 

Transformations (cont.)
 Scaling

 glScale* (sx, sy, sz);
 * is either f or d

 sx, sy and sz are any real number

 Negative values generate reflection

 Zero values can cause error because inverse matrix 
cannot be calculated

 All routines construct a 4x4 transformation 
matrix

 OpenGL uses composite matrices 

 Be careful with the order 
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OpenGL Matrix Operations

 glMatrixMode(.);

 Projection Mode: Determines how the scene is 

projected onto the screen

 Modelview Mode: Used for storing and combining 

geometric transformations

 Texture Mode: Used for mapping texture patterns 

to surfaces

 Color Mode: Used to convert from one color mode 

to another
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OpenGL Matrix Operations

 Modelview matrix, used to store and combine 

geometric transformations

 glMatrixMode(GL_MODELVIEW);

 A call to a transformation routine generates a 

matrix that is multiplied by the current matrix

 To assign the identity matrix to the current 

matrix

 glLoadIdentity();
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OpenGL Matrix Operations

(cont.)
 Alternatively:

 glLoadMatrix* (elements16);

 To assign other values to the elements of the 

current matrix

 In column-major order:

 First four elements in first column

 Second four elements in second column

 Third four elements in third column

 Fourth four elements in fourth column
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OpenGL Matrix Operations

(cont.)
 Concatenating a specified matrix with current 

matrix:

 glMultMatrix* (otherElements16);

 Current matrix is postmultiplied (right-to-left) by 

the specified matrix

 Warning:

 Matrix notation mjk means:

 In OpenGL: j  column, k  row

 In mathematics: j  row, k  column
762D Geometric Transformations



OpenGL Matrix Stacks

 OpenGL maintains a matrix stack for 
transformations

 Initially the modelview stack contains only the 
identity matrix

 More about it:
 Coming soon
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OpenGL Transformation Routines

 For example, assume we want to do in the following 
order:
 translate by +2, -3, +4,

 rotate by 450 around axis formed between origin and 1, 1, 1

 scale with respect to the origin by 2 in each direction.

 Our code would be

glMatrixMode(GL_MODELVIEW); 

glLoadIdentity(); //start with identity

glScalef(2.0,2.0,2.0);   //Note: Start with the LAST operation

glRotatef(45.0,1.0,1.0,1.0);

glTranslatef(2.0,-3.0, 4.0); //End with the FIRST operation
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OpenGL Transformation Functions

792D Geometric Transformations



Next Lecture

3D Geometric Transformations
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