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Objectives

 HB Ch. 7, GVS Ch. 3

 Basic 2D Transformations (rigid-body 
transformations):

 Translation

 Rotation

 Scaling

 Homogenenous Representations and 
Coordinates

 2D Composite Transformations
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Objectives (cont.)

 Other Transformations: 

 Reflection 

 Shearing

 Raster Methods for Transformations and 
OpenGL

 Transformations between 2D Coordinate 
Systems and OpenGL
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Geometric Transformations

 Sometimes also called modeling 

transformations

 Geometric transformations: Changing an object’s 

position (translation), orientation (rotation) or size 

(scaling)

 Modeling transformations: Constructing a scene 

or hierarchical description of a complex object

 Others transformations: reflection and 

shearing operations
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Basic 2D Geometric 

Transformations

 2D Translation

 x’ = x + tx , y’ = y + ty

 P’=P+T

 Translation moves the object without deformation 

(rigid-body transformation)
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Basic 2D Geometric 

Transformations (cont.)

 2D Translation

 To move a line segment, apply the transformation 

equation to each of the two line endpoints and 

redraw the line between new endpoints

 To move a polygon, apply the transformation 

equation to coordinates of each vertex and 

regenerate the polygon using the new set of vertex 

coordinates
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2D Translation Routine

class wcPt2D {

public:

GLfloat x, y;

};

void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)

{

GLint k;

for (k = 0; k < nVerts; k++) {

verts [k].x = verts [k].x + tx;

verts [k].y = verts [k].y + ty;

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (verts [k].x, verts [k].y);

glEnd ( );

}
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 2D Rotation

 Rotation axis

 Rotation angle

 rotation point or pivot point (xr,yr)

yr

xr

θ

Basic 2D Geometric 

Transformations (cont.)
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 2D Rotation
 If θ is positive  counterclockwise rotation

 If θ is negative  clockwise rotation

 Remember:
 cos(a + b) = cos a cos b - sin a sin b

 cos(a - b) = cos a sin b + sin a cos b

Basic 2D Geometric 

Transformations (cont.)

92D Geometric Transformations



 2D Rotation

 At first, suppose the pivot point is at the origin

 x’=r cos(θ+Φ) = r cos θ cos Φ - r sin θ sin Φ

y’=r sin(θ+Φ) = r cos θ sin Φ + r sin θ cos Φ

 x = r cos Φ, y = r sin Φ

 x’=x cos θ - y sin θ

y’=x sin θ + y cos θ

Φ

(x,y)r
r θ

(x’,y’)

Basic 2D Geometric 

Transformations (cont.)
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Basic 2D Geometric 

Transformations

 2D Rotation

 P’=R·P
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 2D Rotation
 Rotation of a point about any specified position 

(xr,yr) 

x’=xr+(x - xr) cos θ – (y - yr) sin θ

y’=yr+(x - xr) sin θ + (y - yr) cos θ

 Rotations also move objects without deformation

 A line is rotated by applying the rotation formula to 
each of the endpoints and redrawing the line 
between the new end points

 A polygon is rotated by applying the rotation 
formula to each of the vertices and redrawing the 
polygon using new vertex coordinates

Basic 2D Geometric 

Transformations (cont.)
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2D Rotation Routine

class wcPt2D {

public:

GLfloat x, y;

};

void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt, GLdouble theta)

{

wcPt2D * vertsRot;

GLint k;

for (k = 0; k < nVerts; k++) {

vertsRot [k].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta) - (verts [k].y - pivPt.y) * 
sin (theta);

vertsRot [k].y = pivPt.y + (verts [k].x - pivPt.x) * sin (theta) + (verts [k].y - pivPt.y) * 
cos (theta);

}

glBegin (GL_POLYGON);

for (k = 0; k < nVerts; k++)

glVertex2f (vertsRot [k].x, vertsRot [k].y);

glEnd ( );
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 2D Scaling

 Scaling is used to alter the size of an object

 Simple 2D scaling is performed by multiplying 

object positions (x, y) by scaling factors sx and sy

x’ = x · sx

y’ = y · sx

or P’ = S·P
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Basic 2D Geometric 

Transformations (cont.)
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 2D Scaling

 Any positive value can be used as scaling factor 

 Values less than 1 reduce the size of the object

 Values greater than 1 enlarge the object

 If scaling factor is 1 then the object stays unchanged

 If sx = sy , we call it uniform scaling

 If scaling factor <1, then the object moves closer to the 

origin and If scaling factor >1, then the object moves 

farther from the origin

x’ x

Basic 2D Geometric 

Transformations (cont.)
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 2D Scaling

 Why does scaling also reposition object?

 Answer: See the matrix (multiplication)

 Still no clue?



𝑥′
𝑦′

=
𝑠𝑥 0
0 𝑠𝑦

∗
𝑥
𝑦 =

𝑥 ∗ 𝑠𝑥 + 𝑦 ∗ 0
𝑥 ∗ 0 + 𝑦 ∗ 𝑠𝑦

Basic 2D Geometric 

Transformations (cont.)
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 2D Scaling

 We can control the location of the scaled object by 

choosing a position called the fixed point (xf,yf)

x’ – xf = (x – xf) sx y’ – yf = (y – yf) sy

x’=x · sx + xf (1 – sx)

y’=y · sy + yf (1 – sy)

 Polygons are scaled by applying the above formula 

to each vertex, then regenerating the polygon using 

the transformed vertices

Basic 2D Geometric 

Transformations (cont.)
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2D Scaling Routine

class wcPt2D {

public:

GLfloat x, y;

};

void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt, GLfloat sx, 

GLfloat sy)

{

wcPt2D vertsNew;

GLint k;

for (k = 0; k < n; k++) {

vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx);

vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy);

}

glBegin (GL_POLYGON);

for (k = 0; k < n; k++)

glVertex2v (vertsNew [k].x, vertsNew [k].y);

glEnd ( );

}
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Matrix Representations and 

Homogeneous Coordinates
 Many graphics applications involve 

sequences of geometric transformations

 Animations

 Design and picture construction applications

 We will now consider matrix representations 

of these operations

 Sequences of transformations can be efficiently 

processed using matrices
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Matrix Representations and 

Homogeneous Coordinates (cont.)
 P’ = M1 · P + M2

 P and P’ are column vectors

 M1 is a 2 by 2 array containing multiplicative 

factors

 M2 is a 2 element column matrix containing 

translational terms

 For translation M1 is the identity matrix

 For rotation or scaling, M2 contains the 

translational terms associated with the pivot point 

or scaling fixed point
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 To produce a sequence of operations, such 

as scaling followed by rotation then 

translation, we could calculate the 

transformed coordinates one step at a time

 A more efficient approach is to combine 

transformations, without calculating 

intermediate coordinate values

Matrix Representations and 

Homogeneous Coordinates (cont.)
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 Multiplicative and translational terms for a 2D 

geometric transformation can be combined 

into a single matrix if we expand the 

representations to 3 by 3 matrices

 We can use the third column for translation terms, 

and all transformation equations can be 

expressed as matrix multiplications

Matrix Representations and 

Homogeneous Coordinates (cont.)
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 Expand each 2D coordinate (x,y) to three 

element representation (xh,yh,h) called 

homogeneous coordinates

 h is the homogeneous parameter such that 

x = xh/h, y = yh/h,

  infinite homogeneous representations for a 

point

 A convenient choice is to choose h = 1

Matrix Representations and 

Homogeneous Coordinates (cont.)
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 2D Translation Matrix

or, P’ = T(tx,ty)·P
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Matrix Representations and 

Homogeneous Coordinates (cont.)
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 2D Rotation Matrix

or, P’ = R(θ)·P
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Matrix Representations and 

Homogeneous Coordinates (cont.)
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 2D Scaling Matrix

or, P’ = S(sx,sy)·P
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Matrix Representations and 

Homogeneous Coordinates (cont.)
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Inverse Transformations

 2D Inverse Translation Matrix

 By the way:
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Inverse Transformations (cont.)

 2D Inverse Rotation Matrix

 And also:
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Inverse Transformations (cont.)

 2D Inverse Rotation Matrix:

 If θ is negative  clockwise 

 In 

 Only sine function is affected

 Therefore we can say

 Is that true?

 Proof: It’s up to you 

IRR  *1

TRR 1
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Inverse Transformations (cont.)

 2D Inverse Scaling Matrix

 Of course:
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2D Composite Transformations

 We can setup a sequence of transformations 

as a composite transformation matrix by 

calculating the product of the individual 

transformations

 P’=M2·M1·P

=M·P
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2D Composite Transformations

(cont.)

 Composite 2D Translations

 If two successive translation are applied to a point P, 

then the final transformed location P' is calculated as
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 Composite 2D Rotations
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2D Composite Transformations

(cont.)
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 Composite 2D Scaling
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2D Composite Transformations

(cont.)
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 Don’t forget:

 Successive translations are additive

 Successive scalings are multiplicative

 For example: If we triple the size of an object 

twice, the final size is nine (9) times the original

 9 times?

 Why?

 Proof: Again up to you 

2D Composite Transformations

(cont.)

352D Geometric Transformations



General Pivot Point Rotation

 Steps:

1. Translate the object so that the pivot point is 

moved to the coordinate origin.

2. Rotate the object about the origin.

3. Translate the object so that the pivot point is 

returned to its original position.
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General Pivot Point Rotation
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 General 2D Pivot-Point Rotation
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2D Composite Transformations

(cont.)
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General Fixed Point Scaling

 Steps:

1. Translate the object so that the fixed point 

coincides with the coordinate origin.

2. Scale the object about the origin.

3. Translate the object so that the pivot point is 

returned to its original position.
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General Fixed Point  Scaling 

(cont.)

(xr, yr) (xr, yr)
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1 0 𝑥𝑓
0 1 𝑦𝑓
0 0 1

.
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

.

1 0 − 𝑥𝑓
0 1 − 𝑦𝑓
0 0 1

=

𝑠𝑥 0 𝑥𝑓(1 − 𝑠𝑥)

0 𝑠𝑦 𝑦𝑓(1 − 𝑠𝑦)

0 0 1

𝐓(𝑥𝑓 , 𝑦𝑓) ⋅ 𝐒(𝑠𝑥, 𝑠𝑦) ⋅ 𝐓(−𝑥𝑓 , −𝑦𝑓) = 𝐒(𝑥𝑓 , 𝑦𝑓, 𝑠𝑥, 𝑠𝑦)

• General 2D Fixed-Point Scaling:

General Fixed Point  Scaling 

(cont.)
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2D Composite Transformations

(cont.)

 General 2D scaling directions:

 Above: scaling parameters were along x and y

directions

 What about arbitrary directions?

 Answer: See next slides 
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General 2D Scaling Directions

Scaling parameters s1 and s2 along orthogonal directions defined by the 

angular displacement θ. 432D Geometric Transformations



General 2D Scaling Directions 

(cont.)

 General procedure:

1. Rotate so that directions coincides with x and y

axes

2. Apply scaling transformation 𝑆 𝑠1, 𝑠2
3. Rotate back

 The composite matrix:

𝑅−1 Θ ∗ 𝑆 𝑠1, 𝑠2 ∗ 𝑅 Θ =
𝑠1 cos

2 Θ + 𝑠2 sin
2 Θ 𝑠2 − 𝑠1 cosΘ sinΘ 0

𝑠2 − 𝑠1 cosΘ sinΘ 𝑠1sin
2 Θ + 𝑠2 cos

2 Θ 0
0 0 1
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2D Composite Transformations

(cont.)

 Matrix Concatenation Properties:

 Matrix multiplication is associative !

 M3· M2· M1= (M3· M2 ) · M1 = M3· ( M2 · M1 )

 A composite matrix can be created by multiplicating left-

to-right (premultiplication) or right-to-left 

(postmultiplication)

 Matrix multiplication is not commutative ! 

 M2 · M1 ≠ M1 · M2
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2D Composite Transformations

(cont.)

 Matrix Concatenation Properties:
 But:

 Two successive rotations

 Two successive translations

 Two successive scalings 

 are commutative!

 Why?

 Proof: You got it: Up to you  
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Reversing the order

in which a sequence of transformations is performed may affect the transformed 

position of an object. 

In (a), an object is first translated in the x direction, then rotated counterclockwise 

through an angle of 45°. 

In (b), the object is first rotated 45° counterclockwise, then translated in the x

direction
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Other 2D Transformations

 Reflection

 Transformation that produces a mirror image of an 

object
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 Reflection 

 Image is generated relative to an axis of reflection 

by rotating the object 180° about the reflection 

axis

 Reflection about the line y=0 (the x axis) (previous 

slide)
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Other 2D Transformations (cont.)
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Other 2D Transformations (cont.)

 Reflection

 Reflection about the line x=0 (the y axis)
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−1 0 0
0 − 1 0
0 0 1

 Reflection about the origin

Other 2D Transformations (cont.)

512D Geometric Transformations



 Reflection about the line y=x

0 1 0
1 0 0
0 0 1

Other 2D Transformations (cont.)
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 Reflection about the line y=-x

0 − 1 0
−1 0 0
0 0 1

Other 2D Transformations (cont.)
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 Shear

 Transformation that distorts the shape of an object 

such that the transformed shape appears as the 

object was composed of internal layers that had 

been caused to slide over each other

y

x

(0,1) (1,1)

(1,0)(0,0)

y

x

(2,1) (3,1)

(1,0)(0,0)
shx=2

Other 2D Transformations (cont.)
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 Shear

 An x-direction shear relative to the x axis 

 An y-direction shear relative to the y axis
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Other 2D Transformations (cont.)
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 Shear

 x-direction shear relative to other reference lines
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yyshxx refx





'

*'

Other 2D Transformations (cont.)
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Example

A unit square (a) is transformed to a shifted parallelogram 

(b) with shx = 0.5 and yref = −1 in the shear matrix from Slide 56
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 Shear

 y-direction shear relative to the line x = xref



















100

*1

001

refyy xshsh

 refy xxshxy

xx




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'

Other 2D Transformations (cont.)

582D Geometric Transformations



Example

A unit square (a) is turned into a shifted parallelogram 

(b) with parameter values shy = 0.5 and xref = −1 in the y -direction shearing 

transformation from Slide 58
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 This slide is intentionally left blank

 Your responsibility to fill it 

Raster Methods for 
Transformations and OpenGL
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Transformation Between 

Coordinate Systems

 Individual objects may be defined in their 

local cartesian reference system.

 The local coordinates must be transformed 

to position the objects within the scene 

coordinate system.
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Steps for coordinate transformation

1. Translate so that the origin (x0, y0 ) of the 

x′-y′ system is moved to the origin of  the 

x-y system.

2.Rotate the x′ axis on to the axis x.

Transformation Between 

Coordinate Systems
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y

x

θ

x0

y0

0

Transformation Between 

Coordinate Systems (cont.)
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y

xx0

y0

0

θ

Transformation Between 

Coordinate Systems (cont.)
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y

xx′ x0

y0

0

y′

Transformation Between 

Coordinate Systems (cont.)
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𝐓(−𝑥0, −𝑦0) =
1 0 − 𝑥0
0 1 − 𝑦0
0 0 1

𝐑(−𝜃) =
𝐶𝑜𝑠𝜃 𝑆𝑖𝑛𝜃 0
−𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝜃 0
0 0 1

𝐌𝑥𝑦,𝑥′𝑦′ = 𝐑(−𝜃) ⋅ 𝐓(−𝑥0, −𝑦0)

Transformation Between 

Coordinate Systems (cont.)
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An alternative method:

-Specify a vector V that indicates the direction

for the positive y′ axis. Let

-Obtain the unit vector u=(ux ,u y) along the x′ 
axis by rotating v 900 clockwise.

𝐯 =
𝐕

𝐕
= (𝑣𝑥, 𝑣𝑦)

Transformation Between 

Coordinate Systems (cont.)
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 Elements of any rotation matrix can be 

expressed as elements of orthogonal unit 

vectors. That is, the rotation matrix can be 

written as

𝐑 =

𝑢𝑥 𝑢𝑦 0

𝑣𝑥 𝑣𝑦 0

0 0 1

Transformation Between 

Coordinate Systems (cont.)
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y

xx0

y0

0

V

Transformation Between 

Coordinate Systems (cont.)
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OpenGL Geometric 

Transformation Functions
 A separate function is available for each of the 

basic geometric transformations 

AND

 All transformations are specified in three

dimensions

 Why?

 Answer: Remember; OpenGL was developed as 

3D library

 But how to perform 2D transformations?

 Answer: Set z = 0
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Basic OpenGL Geometric 

Transformations
 Translation

 glTranslate* (tx, ty, tz);
 * is either f or d

 tx, ty and tz are any real number

 For 2D, set tz=0.0

 Rotation
 glRotate* (theta, vx, vy, vz);

 * is either f or d

 theta is rotation angle in degrees (internally converted to 
radian)

 Vector v=(vx, vy, vz) defines the orientation for a rotation axis 
that passes through the coordinate origin

 For 2D, set vz=1.0 and vx=vy=0.0
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Basic OpenGL Geometric 

Transformations (cont.)
 Scaling

 glScale* (sx, sy, sz);
 * is either f or d

 sx, sy and sz are any real number

 Negative values generate reflection

 Zero values can cause error because inverse matrix 
cannot be calculated

 All routines construct a 4x4 transformation 
matrix

 OpenGL uses composite matrices 

 Be careful with the order 
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OpenGL Matrix Operations

 glMatrixMode(.);

 Projection Mode: Determines how the scene is 

projected onto the screen

 Modelview Mode: Used for storing and combining 

geometric transformations

 Texture Mode: Used for mapping texture patterns 

to surfaces

 Color Mode: Used to convert from one color mode 

to another
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OpenGL Matrix Operations

 Modelview matrix, used to store and combine 

geometric transformations

 glMatrixMode(GL_MODELVIEW);

 A call to a transformation routine generates a 

matrix that is multiplied by the current matrix

 To assign the identity matrix to the current 

matrix

 glLoadIdentity();
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OpenGL Matrix Operations

(cont.)
 Alternatively:

 glLoadMatrix* (elements16);

 To assign other values to the elements of the 

current matrix

 In column-major order:

 First four elements in first column

 Second four elements in second column

 Third four elements in third column

 Fourth four elements in fourth column
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OpenGL Matrix Operations

(cont.)
 Concatenating a specified matrix with current 

matrix:

 glMultMatrix* (otherElements16);

 Current matrix is postmultiplied (right-to-left) by 

the specified matrix

 Warning:

 Matrix notation mjk means:

 In OpenGL: j  column, k  row

 In mathematics: j  row, k  column
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OpenGL Matrix Stacks

 OpenGL maintains a matrix stack for 
transformations

 Initially the modelview stack contains only the 
identity matrix

 More about it:
 Coming soon
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OpenGL Transformation Routines

 For example, assume we want to do in the following 
order:
 translate by +2, -3, +4,

 rotate by 450 around axis formed between origin and 1, 1, 1

 scale with respect to the origin by 2 in each direction.

 Our code would be

glMatrixMode(GL_MODELVIEW); 

glLoadIdentity(); //start with identity

glScalef(2.0,2.0,2.0);   //Note: Start with the LAST operation

glRotatef(45.0,1.0,1.0,1.0);

glTranslatef(2.0,-3.0, 4.0); //End with the FIRST operation
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OpenGL Transformation Functions
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Next Lecture

3D Geometric Transformations
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