Color Principles for Computer Graphics

Donald House 9/17/09 Artist's slides by Lynette House

Physics of Color

Physiology of Color

Physiology of Color

Artist's Color

Hue Saturation Value

Value

- Luminance
- Dark to Light
- Value range
 - High key
 - Middle key
 - Low key

Hue - Paint Mixing

- Physical mix of opaque paints
- Primary: RYB
- Secondary: OGV
- Neutral: R + Y + B

Hue - Ink Mixing

- Subtractive mix of transparent inks
- Primary: CMY
- Secondary: RGB
- ~Black: C + M + Y
- Actually use CMYK
 to get true black

Hue - Ink Mixing

Assumption: ink printed on pure white paper

$$CMY = White - RGB:$$

 $C = 1 - R, M = 1 - G, Y = 1 - B$

CMYK from CMY (K is black ink): K = min(C, M, Y)C = C - K, M = M - K, Y = Y - K

Hue - Light Mixing

- Additive mix of colored lights
- Primary: RGB
- Secondary: CMY
- White = R + G + B
- Show demonstration of optical mixing

Saturation

• Purity of color

Perception of Color

In the end, color is a perceptual phenomenon

Color Constancy

Perceived color is highly context dependent Allowing color recognition with variable lighting conditions

Color Constancy

Perceived color is highly context dependent Allowing color recognition with variable lighting conditions

Simultaneous Contrast

Simultaneous Contrast

RGB Color Wheel

- Warm/Cool
- Complements
- Split Complement
- Analogous
- Show RGB Cube

HSV is a projection of the RGB space

Hue, an angular measure (0 ... 360)

Saturation, a fractional measure (0.0 ... 1.0)

Value, a fractional measure (0.0 ... 1.0)

CIE 1931 Study

Color Matching Experiment

CIE Color Matching Functions

RGB from Spectrum

XYZ from Spectrum

CIE xyY from CIE XYZ

CIE xyY color model is used to catalog colors:

x = X / (X + Y + Z)y = Y / (X + Y + Z)Y = luminance

CIE xyY Color Cone

CIE xyY Typical Display Gamut

CIE Lu*v* and Lab **Perceptually Uniform Spaces**

*Lu***v** rescales *xyY Lab* color opponents

Color Picker

End