
May 2010 1

Computer Graphics Viewing

Shmuel Wimer

Bar Ilan Univ., School of Engineering

May 2010 2

minxw maxxw

minyw

maxyw
Clipping Window

minxv maxxv

minyv

maxyv
Viewport

Viewport Coordinates

The clipping window is

mapped into a viewport.

Viewing world has its own

coordinates, which may be

a non-uniform scaling of

world coordinates.

World Coordinates

May 2010 3

2D viewing transformation pipeline

Construct World-

Coordinate Scene

From Modeling-

Coordinate

Transformations

World

Coordinates

Modeling

Coordinates
Convert World-

Coordinates to

Viewing-

Coordinates

Viewing Coordinates

Transform Viewing-

Coordinates to

Normalized-

Coordinates

Normalized

Coordinates
Map Normalized-

Coordinates to

Device-Coordinates

Device

Coordinates

May 2010 4

Normalization and Viewport Transformations

• First approach:

– Normalization and window-to-viewport transformations are

combined into one operation.

– Viewport range can be in [0,1] x [0,1].

– Clipping takes place in [0,1] x [0,1].

– Viewport is then mapped to display device.

• Second approach:

– Normalization and clipping take place before viewport

transformation.

– Viewport coordinates are specified in screen coordinates.

May 2010 5

 ,xw yw
 ,xv yv

Maintain relative size and position between clipping window and viewport.

min min

max min max min

xv xv xw xw

xv xv xw xw

 


 

min min

max min max min

yv yv yw yw

yv yv yw yw

 


 

minxw maxxw

minyw

maxyw
Clipping Window

minxv maxxv

minyv

maxyv
Normalized Viewport

1

10

May 2010 6

Scaling factors:
max min max min

max min max min

, x y

xv xv yv yv
s s

xw xw yw yw

 
 

 

Translation factors:

max min min max max min min max

max min max min

, x y

xw xv xw xv yw yv yw yv
t t

xw xw yw yw

 
 

 

 Solving for , obtains:

, , wherex x y y

xv yv

xv s xw t yv s yw t   

     

window,
norm_viewport

min min min min

0

, , , 0

0 0 1

x x

x y y y

s t

xv yv s s xw yw s t



 
 

    
 
  

M

T S T

This can also be obtained by composing transformations:

May 2010 7

World clipping window can first be mapped to normalized square between -1

and +1, where clipping algorithm takes place, and then transform the scene

into viewport given in display coordinates.

max min

max min max min

max min
window,
norm_square max min max min

2
0

2
0

0 0 1

xw xw

xw xw xw xw

yw yw

yw yw yw yw

 
  

 
  

  
 

 
 
 
 

M

   

   
max min max min

norm_square, max min max min
viewport

2 0 2

0 2 2

0 0 1

xv xv xv xv

yv yv yv yv

  
 

   
 
 

M

May 2010 8

Clipping Algorithms

7p

1p
2p

3p

4p

5p
6p

8p

9p

10p

Before Clipping

1p
2p

5
p

6p

7
p

8
p

After Clipping

   

   

0 0 end end

0 end 0 0 end 0

Parametric equations of line segment from , to ,

, , 0 1.

x y x y

x x u x x y y u y y u       

Used to determine the parts contained in clipping window.

May 2010 9

Cohen-Sutherland Line Clipping Algorithm

• Intersection calculations are expensive. Find first lines

completely inside or certainly outside clipping window.

Apply intersection only to undecided lines.

• Perform cheaper tests before proceeding to expensive

intersection calculations.

May 2010 10

Cohen-Sutherland Line Clipping Algorithm

• Assign code to every endpoint of line segment.

– Borderlines of clipping window divide the plane into two halves.

– A point can be characterized by a 4-bit code according to its

location in half planes.

– Location bit is 0 if the point is in the positive half plane, 1

otherwise.

– Code assignment involves comparisons or subtractions.

• Completely inside / certainly outside tests involve only

logic operations of bits.

May 2010 11

maxxw x

0 10

0 10

0 10

0 00

0 00

1 11

miny yw

1 11

0 00

0 00

maxyw y

0 01

0 01

0 01

minx xw

If endpoint codes has 1 in same bit, line is certainly outside.

Endpoint codes are 0000 for both iff line is completely inside.

Top bit Bottom bit Right bit Left bit

May 2010 12

Lines that cannot be decided are intersected with window

border lines.

Each test clips the line and the remaining is tested again

for full inclusion or certain exclusion, until remaining is

either empty or fully contained.

Endpoints of lines are examined against left, right, bottom

and top borders (can be any order).

May 2010 13

000 0

001 0001 1

000 1

010 0010 1

2p

1p

2
p

1
p

3p

4p

2
p

3
p

May 2010 14

 0 0,x y

 end end,x y

Liang-Barsky Line Clipping Algorithm

Define clipping window by intersections of four half-planes.

Treat undecided lines in Cohen-Sutherland more efficiently.

minxw



minyw

 maxxw



maxyw



May 2010 15

   0 end 0 0 end 0

Parametric presentation:

, , 0 1.x x u x x y y u y y u       

 

 

min 0 end 0 max

min 0 end 0 max

A point on the line is cotained in the clipping window iff:

,

.

xw x u x x xw

yw y u y y yw

   

   

1 0 end 1 0 min

2 end 0 2 max 0

3 0 end 3 0 min

4 end 0 4 max 0

It can be expressed by: , 1,2,3,4, where

, ;

, .

, ;

, .

k kup q k

p x x q x xw

p x x q xw x

p y y q y yw

p y y q yw y

 

   

   

   

   

May 2010 16

   0 0 end end

In the inequality if 0 (0), the

traversal from , to , by increasing

 from to + proceeds the line from the ()

half-plane to () one (with respect to the -th

border).

k k k kup q p p

x y x y

u

k

  

   

 

 Intersection of , extension with -th border

occurs at .k k

k

u q p

 



May 2010 17

0 end

0

end

We calculate and update and progressively for

1,2,3,4 borders (left, right, bottom, top).

If 0 is calculated since progression is from

to half planes. Similarly, if 0 is c

k

k

u u

k

p u

p u



 

  alculated.

0 end

end 0

end 0

 is the maximum among 0 and all . is the

minimum among 1 and all . The feasibility

condition is progressively checked. The line

is completely outside if .

k k

k k

u q p u

q p

u u

u u





May 2010 18

 

Notice that doesn't need actual division since

comparison of with can be done by

comparison of with , and the quotient

can be stored as a pair ,

k kq p

q p q p

q p q p q p

q p

   

   

   end 0 0 0 end endOnly if , given by , and , ,

the actual ends of the clipped portion are calculated.

u u q p q p

May 2010 19

This is more efficient than Cohen-Sutherland Alg,

which computes intersection with clipping window

borders for each undecided line, as a part of the

feasibility tests.

May 2010 20

Nicholl-Lee-Nicholl Line Clipping Algorithm

• Creates more regions around clipping window to avoid

multiple line intersection calculations.

• Performs fewer comparisons and divisions than

Cohen-Sutherland and Liang-Barsky, but cannot be

extended to 3D, while they can.

• For complete inclusion in clipping window or certain

exclusion we’ll use Cohen-Sutherland.

May 2010 21

0P0P

0P

0Examine first where the starting point is located.

Only three regionsare considered. Location in any

of the other six regions can be handled by symmety

transformation.

P

May 2010 22

0P

T

L

B

R

 

end

0 end

The location of in each

region defines what edge the

line , is intersecting.

P

P P

May 2010 23

LT

L

LB

LR

L

L
0P

 

end

0 end

Else, is detected for being positioned in any of

LB, LR or LT, case where , is clipped with

left border and bottom, right or top border, resp.

P

P P

endDetecting whether is in

any of regions L is immediate.

P

May 2010 24

Once one of LT, LR or LB regions is found,

intersection point with appropriate border is calculated.

 0 end end, is entierely clipped if is positioned

outside the regions.

P P P

LT

L

LB

LR

L

L
0P

endP

endP

 

 
0 end

0 corner

end

The slope of , is

compared to ,

for each corner to find the

region of .

P P

P P

P

May 2010 25

0There are two cases, depending on whether is

closer to left or top borders.

P

TB

0P

T

TR
T

L

LB

TR

0P
T

LR

L

L

LB

May 2010 26

TB

0P

T

TR
T

L

LB

TR

0P
T

LR

L

L

LB

endNotice that simple inclusion test of P in

clipping rectangle is not enough since there

are both T and L labels for the regions inside.

Testing of the angular regions is a must.

May 2010 27

Sutherland-Hodgman Polygon Clipping

2

1

3

1’

3’

1’’

3’’

2’’2’

Efficient algorithm for clipping convex polygons.

Edges are clipped against every border line of clipping window. Edges

are processed successively.

Allows pipelining of edge clipping of polygons, as well as pipelining of

different polygons.

1’

3’

1’’

3’’

2’’2’

Clipping

Clipping Window

May 2010 28

The four possible outputs generated by the left clipper, depending on

the relative position of pair of edge endpoints.

1v
1
v

2v 1v

2v

1v
1
v

2v
1v

2v

out in

1
v 2voutput:

in in

2voutput:

in out

1
voutput:

out out

output: none

May 2010 29

Input Left Clipper Right Clipper Bottom Clipper Top Clipper

[1,2]: (in-in)>{2}

[2,3]: (in-out)>{2’} [2,2’]:(in-in)>{2’}

[3,1]: (out-in)>{3’,1} [2’,3’]:(in-in)>{3’} [2’,3’]:(in-out)>{2”}

[3’,1]:(in-in)>{1} [3’,1]:(out-out)>{}

[1,2]:(in-in)>{2} [1,2]:(out-in)>{1’,2} [2”,1’]:(in-in)>1’}

[2,2’]:(in-in)>{2’} [1’,2]:(in-in)>{2}

[2,2’]:(in-in)>{2’}

[2’,2”]:(in-in)>{2”}

1

1’

2

2’

2”3

3’

May 2010 30

• The four clippers can work in parallel.

– Once a pair of endpoints it output by the first clipper,

the second clipper can start working.

– The more edges in a polygon, the more effective

parallelism is.

• Processing of a new polygon can start once first

clipper finished processing.

– No need to wait for polygon completion.

May 2010 31

Convex Polygon Intersection

P

Q

P∩Q

Theorem: The intersection of an L-vertex convex polygon and an M-vertex

convex polygon is a convex polygon of L+M vertices at most.

Proof: P∩Q is an intersection of L+M interior half planes determined by the

two polygons.

Intersection of convex polygons can answer the question of whether two

sets of points can be separated by a line.

May 2010 32

Theorem: The intersection of an L-vertex convex polygon and an M-vertex

convex polygon can be found in θ(L+M) time.

Proof: Polygons are given in cyclic order of vertices. We start from the

leftmost vertex of both polygons and progress along the border of both

in a left-to-right fashion, defining O(L+M) slabs.

Inside a slab each polygon forms a trapezoid. The intersection of two

trapezoids can be calculated in constant time.

May 2010 33

Another solution: The non empty intersection of two convex polygons

forms a sequence of “sickles” enclosing the intersection. The border of a

sickle comprises internal and external sequence of vertices originating

from P and Q, which are alternating in every sickle.

R=P∩Q
P

Q

sickle

Let P: (p1,p2,…,pL) and Q: (q1,q2,…,qM) be counterclockwise cyclically

ordered. The algorithm advances such that ∂P and ∂Q are “chasing” one

another, adjusting their speeds so that they meet at every intersection.

May 2010 34

   

   

1

1

Let and be the vertices where the traversal is.

and are the current edges, defining the half planes

 and , containing and , respectively.

Clearly .

i j i i

j j

i j

i j

p q p p

q q

h p h q P Q

R h p h q







ip

jq

There are four possible situations of

 and with respect to . For each

an advancing rule is in order. The

idea is to progress along boundary of

the "lagging" polygon.

i jp q R

May 2010 35

1 1

Advance is from since there's no

chance for a future intersection point

in the edge . Edge may

have a future intersection with the

boundary of .

i

i i j j

p

p p q q

P

 
ip

jq

(a)

1

1

Edge may still be intersected

later by , while edge have

already exahusted its intersections.

Hence advance is from .

i i

j j

j

p p

Q q q

q





ip

jq

(b)

May 2010 36

Arbitrary choice. Advancing from

 yields case (a), while advancing

from yields case (b).

j

i

q

p

1

1

Edge may still be intersected

later by , while edge have

already exahusted its intersections.

Hence advance is from .

j j

i i

i

q q

P p p

p





ip
jq

(c)

ip jq

(d)

May 2010 37

 

1 1

 CONVEX_POLYGON_INTERSECT (,) {

 1; 1; 1;

 (2) {

 (and intersect) { report intersection }

// initialization

// apply one ADVANCE;

i i j j

void polygon P polygon Q

i j k

while k L M

if p p q q 

  

 

 ;

 }

 (no intersection reported) {

 () { }

 () { }

 of (a), (b), (c)

 { }

 or (d) case

}

}

s

i

j

k

if

if p Q P Q

elseif q P Q P

else Q P

 

 

 



May 2010 38

May 2010 39

 If and belong to the

same sickle, the intersection point terminating the sickle

must be found since algorithm never ADVANCE along

the polygon whose current edge may contain

i jp qCorrecness of algorithm :

 a sought

intersection point.

This in turn guarantees that once an intersection point

of a sickle is found, all the others will be constructed

successively.

May 2010 40

To complete the proof we must show that an

intersection point must be found if . P Q  

 

1

1

Let the current edge on , contain an

intersection point with edge on , so

.

i i

r r

i

p p P

v q q Q

v h p







May 2010 41

sC

rC

v

ip

1ip 

rq

1rq 

sq

farthest vertex

May 2010 42

v

sC

rC

ip

1ip 

rq

1rq 

sq

farthest vertex

case (a)

case (c)

case (d)case (b)

1

1

Let be current edge and . Sequence of

cases (a), (c), (d) and (b) (possibly empty) occurs, while

 stays stationary,

j j j r

i i

q q q C

p p







 until is found.v

May 2010 43

1Let , be a line determined by and

 supporting at , the first

support reached when traversing

from along .

j s j j

m

i

q C l q q

l l P p

p P





1jq 

jq

mp

1rq 

rq

ip

1ip 

l l

1

A sequence of cases (a)

starts at and will stay

so until crossing ,

where case (c)

holds up to (may be

empty). stays stationary.

i

m

j j

p

l

p

q q

May 2010 44

1jq 

jq

m
p

1rq 

rq

ip

1ip 

l l

 

 

If ADVANCE

continues marching

along with cases (d)

and (b) until first

point

is found.

m j

t j

p h q

P

p h q





May 2010 45

1If an edge like exists, steps must reach

it since the boundary of at least one polygon must be

consumed.

i ip p L M 

 

If no intersection was found then the relations

, or can be resolved

in time.

P Q Q P P Q

O L M

  



 

Additional ADVANCE steps suffice to

obtain all the intersection points in cyclic order,

yielding 2 total steps of ADVANCE.

L M

L M





May 2010 46

3D Viewing Concepts

World Coordinate System Viewing Coordinate System

May 2010 47

Choose viewing position, direction and orientation of the

camera in the world.

A clipping window is defined by the size of the aperture

and the lens.

Viewing by computing offers many more options which

camera cannot, e.g., parallel or perspective projections,

hiding parts of the scene, viewing behind obstacles, etc.

2D Reminder

May 2010 48

Clipping window: Selects what we want to see.

Viewport: Indicates where it is to be viewed on the output

device (still in world coordinates).

Display window: Setting into screen coordinates.

In 3D the clipping is displayed on the view plane, but

clipping of the scene takes place in the space by a clipping

volume.

3D transformation pipeline is similar to 2D with addition of

projection transformation.

May 2010 49

3D Viewing Transformation Pipeline

Transform Projection-

Coordinates to

Normalized-

Coordinates

Normalized

Coordinates
Map Normalized-

Coordinates to

Device-Coordinates

Device

Coordinates

Construct World-

Coordinate Scene

From Modeling-

Coordinate

Transformations

World

Coordinates

Modeling

Coordinates

Convert World-

Coordinates to

Viewing-

Coordinates

Viewing

Coordinates

Projection

Transformation

Projection Coordinates

May 2010 50

Model is given in model (self) coordinates.

Conversion to world coordinates takes place.

Viewing coordinate system which defines the position and

orientation of the projection plane (film plane in camera) is

selected, to which scene is converted.

2D clipping window (lens of camera) is defined on the

projection plane (film plane) and a 3D clipping, called view

volume, is established.

May 2010 51

The shape and size of view volume is defined by the

dimensions of clipping window, the type of projection and

the limiting positions along the viewing direction.

Objects are mapped to normalized coordinated and all

parts of the scene out of the view volume are clipped off.

The clipping is applied after all device independent

transformation are completed, so efficient transformation

concatenation is possible.

Few other tasks such as hidden surface removal and

surface rendering take place along the pipeline.

May 2010 52

World to Viewing 3D Transformation

worldx

worldy

worldz viewx

viewy

viewz

v

n
u

0p

view point

view-up vector

May 2010 53

 

 

 

 0 0 0 0

: viewing directionon

: viewing plane

, ,

, ,

, ,

, ,

x y z

x y z

x y z

u u u

v v v

n n n

x y z











n

u v

u

v

n

p

viewx

viewy

viewz

v

n
u

0p

view point

view-up vector

0

0

WC,VC

0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1 0 0 0 1

x y z

x y z

x y z

u u u x

v v v y

n n n z

   
   


    
   
   
   

M

translationrotation

world to viewing

transformation

May 2010 54

Projection Transformations

Projection can be perpendicular or oblique to viewing plane.

Preserves relative size of object’s portions.

Next step in 3D viewing pipeline is projection of object to

viewing plane

Parallel Projection

Coordinate are transferred

to viewing plane along

parallel lines.

View Plane

May 2010 55

Perspective Projection

Projection lines converge

in a point behind viewing

plane.

Doesn’t preserve relative size but looks more realistic.

May 2010 56

Plane View

Side

Elevation

View

Front

Elevation

View

Used in engineering and architecture. Length and angles can be

measured directly from drawings.

Orthogonal (orthographic) projections

Projection lines are parallel to normal.

May 2010 57

Clipping Window and View Volume

Orthogonal Projection

View Volume

Far

Clipping

Plane

Near

Clipping

Plane

View

Plane

Clipping window

viewx

viewy

viewz

May 2010 58

Normalizing Orthogonal Projection

 1, 1, 1  

 1,1,1normz

normy

normx

Normalized View Volume

Display coordinate system is usually left-handed.

Orthogonal Projection View Volume

viewx

viewy

viewz

 min min near, ,xw yw z

 max max far, ,xw yw zw

May 2010 59

max min

max min max min

max min

max min max min

near far

near far near far

ortho,norm

2
0 0

2
0 0

2
0 0

0 0 0 1

xw xw

xw xw xw xw

yw yw

yw yw yw yw

z z

z z z z



 
  

 
  

 
 

 
 
 

  
  

M

WC,VCortho,norm

The complete transformation from world coordinated

to normalized orthogonal-projection coordinates is

obtained by .M M

May 2010 60

Oblique Parallel Projections

Projection is defined by a viewing vector .pV

 , ,x y z

 , ,p p vpx y z

 , , vpx y z

L

pV

Projection lines are

parallel to vector .pV

May 2010 61

The above is called shear transformation, where the

displacement in x and y linearly increases with z.

 , ,x y z

 , ,p p vpx y z

 , , vpx y z

L

pV

      , p vp px pz p vp py pzx x z z V V y y z z V V     

p py

vp pz

y y V

z z V






p px

vp pz

x x V

z z V






Not orthogonal

as viewed

May 2010 62

View

Volume

(Top)

View

Volume

(Side)

Clipping

Window

View Plane

Near

Plane

Far

Plane

pV

pV

View Volume of Parallel Oblique Projection

May 2010 63

oblique

1 0

0 1

0 0 1 0

0 0 0 1

px px

vp

pz pz

py py

vp

pz pz

V V
z

V V

V V
z

V V

 
 

 
 
  
 
 
 
  

M

This is a 3D shear

transformation.

x and y are displaced by

amount proportional to z.

Normalization oblique projection is similar to orthogonal projection.

The composite transformation is obtained by the product of the two.

oblique,norm ortho,norm oblique
 M M M

May 2010 64

Perspective Projections

Projection

Reference

Point

View Plane
Closer objects look larger.

 , ,x y zp

 , ,prp prp prp prpx y zp

 , ,p p vpx y z

viewx

viewy

viewz
View Plane

Projection Point

May 2010 65

   

   

 

Parametric representation of a point on the line

connecting , , with , , :

 , ,

 , 0 1.

prp prp prp prp

prp prp

prp

x y z x y z

x x x x u y y y y u

z z z z u u

 

      

     

P P

   At viewing plane: .vp prpu z z z z  

       

       

Substitution for the point on viewing plane:

p prp vp prp prp vp prp

p prp vp prp prp vp prp

x x z z z z x z z z z

y y z z z z y z z z z

     

     

May 2010 66

The problem with the above representation is that Z appears in

denominator, so matrix multiplication representation of X and Y

on view plane as a function of Z is not straight forward.

Z is point specific, hence division will be computation killer.

Different representation is in order, so transformations can

be concatenated

May 2010 67

Vanishing Points
Vanishing points occur when the viewing plane intersects with the

axes of viewing coordinate system.

Vanishing

Point

One-Point perspective Projection

x

y

z
Principle axes for cube

Parallel to Z lines of XZ plane and parallel lines to Z in YZ plane will

vanish. Vanishing point on viewing plane correspond to infinity in world.

May 2010 68

Vanishing points of all three axes occur when viewing plane

intersects all three axes.

x-axis vanishing point

z-axis vanishing pointViewing plane is parallel to y-axis,

intersecting both x-axis and z-axis

May 2010 69

Transformation Matrix

 

To get rid of in denominator we define parameter

 and new homogeneous coordinates

, , , .

prp

h h h

z

h z z

x y z h

 

, , yielding:p h p hx x h y y h 

   

   

,

.

h prp vp prp vp

h prp vp prp vp

x x z z x z z

y y z z y z z

   

   

May 2010 70

    pers, , ,1 , , , , , ,h h h h hx y z x y z h   P P P M P

 is using a scaling factor and translation .

 and can be set arbitrarily. We'll set those to satisfy

desired normalization.

h z z z z

z z

z zs t s t

s t

 

Matrix Representation:

pers

0

0

0 0

0 0 1

prp vp prp prp prp

prp vp prp prp prp

z z

prp

z z x x z

z z y y z

s t

z

  
 

 
 
 
 

  

M h z zz zs t 

May 2010 71

Transformed coordinate is very useful for deciding

later on the hidden parts of the scene.

z

Notice that drawing the perspective point requires a

division by . depends on coordinate, hence evey

point must be divided by a different number, w

very e

hic

xpe

h is

ve!nsi

h h z

May 2010 72

Perspective-Projection View Volume

Rectangular Frustum

View Volume

Far

Clipping

Plane

Near

Clipping

Plane

View

Plane

Clipping Window

viewx

viewy

viewz
Projection

Reference Point



Field-of-view Angle

May 2010 73

Perspective

Mapping

Clipping Window

View Plane

Near Plane

Far Plane

Symmetric Frustum

View Volume

Projection

Reference Point

Parallel Piped

View Volume

May 2010 74

Perspective

Mapping

Parallel Piped

View Volume

Oblique Frustum

View Volume

minxw maxxw

Projection

Reference Point

May 2010 75

Oblique Perspective-Projection Frustum

   

We'll take the projection reference point to be the origin of viewing

coordinate system , , 0,0,0 and viewing plane at near

clipping plane. Oblique projection results shear transformation

prp prp prpx y z 

 min max min max
near near

. It

transforms the intersection point of center-line with clipping window

, , to 0,0, .
2 2

xw xw yw yw
z z

  
 
 

z shear

1 0 sh 0

0 1 sh 0

0 0 1 0

0 0 0 1

zx

zy

 
 
 
 
 
 

M

 

 
min max

min max

z shear

naer naer

0 2

0 2

1 1

xw xw

yw yw

Z Z

   
  

    
  
  

   

M

May 2010 76

min max min maxwhich solves to sh and sh .
2 2

zx zy

xw xw yw yw 
   

   

near

near

pers

Substituting , , 0,0,0 in the perspective-projection

matrix and positioning the viewing near clipping plane at the view

plane simplifies it to

0 0 0

0 0 0

0 0

0 0 1 0

prp prp prp

z z

x y z

z

z

z

s t



 
 


 
 
 

 

M

The coordinate scaling factor and the translation will be

determined by the normalization requirements.

z zz s t

May 2010 77

 

 
near min max

near min max

obliquepers pers z shear

The complete oblique perspective-projection is obtained by

concatenating the perspective and shear matrices.

0 2 0

0 2 0

0 0

0 0 1 0

z z

z xw xw

z yw yw

s t

  
 

    
 
 

 

M M M

 min max min max

near

near

symmetricpers pers z shear

For symmetric viewing volume , .

Transformation is simplified to:

0 0 0

0 0 0

0 0

0 0 1 0

z z

xw xw yw yw

z

z

s t

   

 
 


   
 
 

 

M M M

May 2010 78

Normalized Perspective-Projection

 

 

normpers scale obliquepers

near min max

near min max

Normalization is obtained by multiplying with standard scaling matrix.

0 2 0

0 2 0

0 0

0 0 1 0

xy

x x

y y

z z

z s s xw xw

z s s yw yw

s t

 

  
 

  
 
 

 

M M M

normpers

Homogenous coordinates

are obtained as follows:

1

h

h

h

x x

y y

z z

h

   
   
   
   
   
   

M

May 2010 79

 

 

 

near min max

near min max

Projection coordinates are:

2 ,

2 ,

.

p h x x

p h y y

p h z z

x x h z s x s xw xw z z

y y h z s y s yw yw z z

z z h s z t z

       

       

   

       

   

   

min min near max max far

max min max min

near far near far

We'd like normalization transform to result:

, , 1, 1, 1 and , , 1,1,1 .

Substitution in above equations yields:

2 , 2 ,

, t 2

x y

z z

xw yw z xw yw z

s xw xw s yw yw

s z z z z

    

   

      near far near far .z z z z

May 2010 80

near min max

max min max min

near min max

max min max minnormpers

near far near far

near far ne

Back substitution in the normalized perspective transformation yields:

2
0 0

2
0 0

2
0 0

z xw xv

xw xw xw xw

z yw yw

yw yw yw yw

z z z z

z z z

 

 

 

 






M

ar far

0 0 1 0

z

 
 
 
 
 
 
 
 

 
  

No division by z!

May 2010 81

3D Viewport Transformation

 

   

 

min min

max max

The normalized view volume cube extending from 1, 1, 1 to

1,1,1 is mapped to a screen viewport, extending from ,

to , . information is stored for depth calculations. is

often

xv yv

xv yv z z

  

max min max min

max min max min

normviewvol,

3D screen

 renormalized to the range from 0 to 1.0, yielding:

0 0
2 2

0 0
2 2

1 1
0 0

2 2

0 0 0 1

xv xv xv xv

yv yv yv yv

  
 
 

  
 
 
 
 
 
 

M

May 2010 82

Settings of Perspective Projection

• Perspective projection point

– Where the viewer (camera, eye) is positioned in the world.

• Positioning viewing plane with respect to viewing

coordinates

– Results vanishing points, one, two or three.

• Clipping window on viewing plane

– Defines the infinite pyramid view volume.

• Near and far clipping planes (parallel to view plane)

– Define the rectangular frustum view volume.

• Scale and translation parameters of perspective matrix

– Define the normalization range.

May 2010 83

3D Clipping

min min min max max max

Clipping can take place on normalized cube:

1, 1, 1, 1, 1, 1.xw yw zw xw yw zw        

Top bit Bottom bit Right bit Left bitFar bit Near bit

Similar to 2D, we add two bits to code the far and near planes.

 

Recall that in 3D point is represented in homogeneous form. Hence

, , , is inside the normalized cube iff

, , if 0

, , if 0

h h h

h h h

h h h

x y z h

h x h h y h h z h h

h x h h y h h z h h



         

         

P

May 2010 84

Left

Right

Top

Bottom

Far

Near

x

z

y

011001 011000 011010

010001 010000 010010

010101 010100 010110

001001 001000 001010

000001 000000 000010

000101 000100 000110

101001 101000 101010

100001 100000 100010

100101 100100 100110

May 2010 85

A line is completely accepted if the codes of its ends are both 000000, or

equivalently, if the logical OR between codes is zero.

A line is rejected if the codes of its ends has at least one 1 in same bit, or

equivalently, if the logical AND between codes is nonzero.

Otherwise, the line is tested against each of the planes and the 2D Liang-

Barsky algorithm can be extended to 3D.

 

   

1 1 1

2 2 2

1 2 1 1

2 2 1 2 1

A point of a line segment extending from , , ,

to , , , is given by , 0 1.

h h h

h h h

x y z h

x y z h u u



     

P P P P

P P P P P

May 2010 86

   
1 2 1

1 2

max

1 2 1

If for instance the codes of the two end points of w.r.t the right

clipping plane 1 are different, the intersection point is derived

from 1.

Solving for

p h h h h

x

x x h x x x u h h h u

u



          

P P

   
1 1 21 1 2yields .h h hu x h x h x h         

0 1 1 0

1 0

Such calculation proceeds for each , 1 6, while

updating and . If at some iteration , line segment is

completely clipped. If upon termination , the end points

of the clipped line s

k kup q k

u u u u

u u

  





egment are obtained.

