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minxw maxxw

minyw

maxyw
Clipping Window

minxv maxxv

minyv

maxyv
Viewport

Viewport Coordinates

The clipping window is 

mapped into a viewport.

Viewing world has its own 

coordinates, which may be 

a non-uniform scaling of 

world coordinates.

World Coordinates
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2D viewing transformation pipeline

Construct World-

Coordinate Scene 

From Modeling-

Coordinate 

Transformations

World 

Coordinates

Modeling 

Coordinates
Convert World-

Coordinates to 

Viewing-

Coordinates

Viewing Coordinates

Transform Viewing-

Coordinates to 

Normalized-

Coordinates

Normalized 

Coordinates
Map Normalized-

Coordinates to 

Device-Coordinates

Device 

Coordinates
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Normalization and Viewport Transformations

• First approach:

– Normalization and window-to-viewport transformations are 

combined into one operation.

– Viewport range can be in [0,1] x [0,1].

– Clipping takes place in [0,1] x [0,1].

– Viewport is then mapped to display device.

• Second approach:

– Normalization and clipping take place before viewport 

transformation.

– Viewport coordinates are specified in screen coordinates. 
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 ,xw yw
 ,xv yv

Maintain relative size and position between clipping window and viewport.

min min

max min max min

xv xv xw xw

xv xv xw xw

 


 

min min

max min max min

yv yv yw yw

yv yv yw yw

 


 

minxw maxxw

minyw

maxyw
Clipping Window

minxv maxxv

minyv

maxyv
Normalized Viewport

1

10
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Scaling factors:
max min max min

max min max min

,     x y

xv xv yv yv
s s

xw xw yw yw

 
 

 

Translation factors:

max min min max max min min max

max min max min

,     x y

xw xv xw xv yw yv yw yv
t t

xw xw yw yw

 
 

 

 Solving for ,  obtains:

,    ,  wherex x y y

xv yv

xv s xw t yv s yw t   

     

window,
norm_viewport

min min min min

0

, , , 0

0 0 1

x x

x y y y

s t

xv yv s s xw yw s t



 
 

    
 
  

M

T S T

This can also be obtained by composing transformations:
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World clipping window can first be mapped to normalized square between -1 

and +1, where clipping algorithm takes place, and then transform the scene 

into viewport given in display coordinates.

max min

max min max min

max min
window,
norm_square max min max min

2
0

2
0

0 0 1

xw xw

xw xw xw xw

yw yw

yw yw yw yw

 
  

 
  

  
 

 
 
 
 

M

   

   
max min max min

norm_square, max min max min
viewport

2 0 2

0 2 2

0 0 1

xv xv xv xv

yv yv yv yv

  
 

   
 
 

M
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Clipping Algorithms

7p

1p
2p

3p

4p

5p
6p

8p

9p

10p

Before Clipping

1p
2p

5
p

6p

7
p

8
p

After Clipping

   

   

0 0 end end

0 end 0 0 end 0

Parametric equations of line segment from ,  to ,

,   ,   0 1.

x y x y

x x u x x y y u y y u       

Used to determine the parts contained in clipping window.
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Cohen-Sutherland Line Clipping Algorithm

• Intersection calculations are expensive. Find first lines 

completely inside or certainly outside clipping window. 

Apply intersection only to undecided lines.

• Perform cheaper tests before proceeding to expensive 

intersection calculations.
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Cohen-Sutherland Line Clipping Algorithm

• Assign code to every endpoint of line segment.

– Borderlines of clipping window divide the plane into two halves.

– A point can be characterized by a 4-bit code according to its 

location in half planes.

– Location bit is 0 if the point is in the positive half plane, 1 

otherwise.

– Code assignment involves comparisons or subtractions.

• Completely inside / certainly outside tests involve only 

logic operations of bits.
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maxxw x

0 10

0 10

0 10

0 00

0 00

1 11

miny yw

1 11

0 00

0 00

maxyw y

0 01

0 01

0 01

minx xw

If endpoint codes has 1 in same bit, line is certainly outside.

Endpoint codes are 0000 for both iff line is completely inside.

Top bit Bottom bit Right bit Left bit
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Lines that cannot be decided are intersected with window 

border lines.

Each test clips the line and the remaining is tested again 

for full inclusion or certain exclusion, until remaining is 

either empty or fully contained.

Endpoints of lines are examined against left, right, bottom 

and top borders (can be any order).
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000 0

001 0001 1

000 1

010 0010 1

2p

1p

2
p

1
p

3p

4p

2
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3
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 0 0,x y

 end end,x y

Liang-Barsky Line Clipping Algorithm

Define clipping window by intersections of four half-planes.

Treat undecided lines in Cohen-Sutherland more efficiently.

minxw



minyw

 maxxw



maxyw


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   0 end 0 0 end 0

Parametric presentation:

,   ,   0 1.x x u x x y y u y y u       

 

 

min 0 end 0 max

min 0 end 0 max

A point on the line is cotained in the clipping window iff:

,   

.

xw x u x x xw

yw y u y y yw

   

   

1 0 end 1 0 min

2 end 0 2 max 0

3 0 end 3 0 min

4 end 0 4 max 0

It can be expressed by: ,  1,2,3,4,  where

,    ; 

,   .

,    ; 

,   .

k kup q k

p x x q x xw

p x x q xw x

p y y q y yw

p y y q yw y

 

   

   

   

   
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   0 0 end end

In the inequality  if  0 ( 0),  the

traversal from ,  to ,  by increasing

 from  to +  proceeds the line from the ( )

half-plane to ( ) one  (with respect to the -th

border).

k k k kup q p p

x y x y

u

k

  

   

 

 Intersection of ,  extension with -th border

occurs at .k k

k

u q p

 


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0 end

0

end

We calculate and update  and  progressively for

1,2,3,4 borders  (left, right, bottom, top). 

If 0  is calculated  since  progression is from 

to  half planes. Similarly, if 0  is c

k

k

u u

k

p u

p u



 

  alculated.

0 end

end 0

end 0

 is the maximum among 0 and all .  is the

minimum among 1 and  all . The feasibility

condition  is progressively checked. The line

is completely outside if .

k k

k k

u q p u

q p

u u

u u




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 

Notice that  doesn't need actual division since

comparison of  with  can be done by 

comparison of  with ,  and the quotient 

can be stored as a pair ,

k kq p

q p q p

q p q p q p

q p

   

   

   end 0 0 0 end endOnly if , given by ,  and , ,

the actual ends of the clipped portion are calculated.

u u q p q p
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This is more efficient  than Cohen-Sutherland Alg, 

which computes intersection with clipping window

borders for each undecided line, as a part of the 

feasibility tests.
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Nicholl-Lee-Nicholl Line Clipping Algorithm

• Creates more regions around clipping window to avoid 

multiple line intersection calculations.

• Performs fewer comparisons and divisions than 

Cohen-Sutherland and Liang-Barsky, but cannot be 

extended to 3D, while they can.

• For complete inclusion in clipping window or certain 

exclusion we’ll use Cohen-Sutherland.
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0P0P

0P

0Examine first where the starting point   is located.

Only three regionsare considered. Location in any

of the other six  regions can be handled by symmety

transformation.

P
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0P

T

L

B

R

 

end

0 end

The location of  in each

region defines what edge the

line ,  is intersecting.

P

P P
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LT

L

LB

LR

L

L
0P

 

end

0 end

Else,  is detected for being positioned in any of

LB, LR or LT, case where ,  is clipped with

left border and bottom, right or top border, resp.

P

P P

endDetecting whether  is in

any of regions L is immediate.

P
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Once one of LT, LR or LB regions is found,

intersection point with appropriate border is calculated.

 0 end end,  is entierely clipped if  is positioned

outside the regions.

P P P

LT

L

LB

LR

L

L
0P

endP

endP

 

 
0 end

0 corner

end

The slope of ,  is

compared to ,

for each corner to find the

region of . 

P P

P P

P
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0There  are  two cases, depending on whether  is

closer to left or top borders.

P

TB

0P

T

TR
T

L

LB

TR

0P
T

LR

L

L

LB
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TB

0P

T

TR
T

L

LB

TR

0P
T

LR

L

L

LB

endNotice that simple inclusion test of P  in

clipping rectangle is not enough since there

are both T and L labels for the regions inside. 

Testing of the angular regions is a must.
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Sutherland-Hodgman Polygon Clipping

2

1

3

1’

3’

1’’

3’’

2’’2’

Efficient algorithm for clipping convex polygons.

Edges are clipped against every border line of clipping window. Edges 

are processed successively.

Allows pipelining of edge clipping of polygons, as well as pipelining of 

different polygons.

1’

3’

1’’

3’’

2’’2’

Clipping

Clipping Window
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The four possible outputs generated by the left clipper, depending on 

the relative position of pair of edge endpoints.

1v
1
v

2v 1v

2v

1v
1
v

2v
1v

2v

out in

1
v 2voutput:

in in

2voutput:

in out

1
voutput:

out out

output: none



May 2010 29

Input Left Clipper Right Clipper Bottom Clipper Top Clipper

[1,2]: (in-in)>{2}

[2,3]: (in-out)>{2’} [2,2’]:(in-in)>{2’}

[3,1]: (out-in)>{3’,1} [2’,3’]:(in-in)>{3’} [2’,3’]:(in-out)>{2”}

[3’,1]:(in-in)>{1} [3’,1]:(out-out)>{}

[1,2]:(in-in)>{2} [1,2]:(out-in)>{1’,2} [2”,1’]:(in-in)>1’}

[2,2’]:(in-in)>{2’} [1’,2]:(in-in)>{2}

[2,2’]:(in-in)>{2’}

[2’,2”]:(in-in)>{2”}

1

1’

2

2’

2”3

3’
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• The four clippers can work in parallel.

– Once a pair of endpoints it output by the first clipper, 

the second clipper can start working.

– The more edges in a polygon, the more effective 

parallelism is.

• Processing of a new polygon can start once first 

clipper finished processing.

– No need to wait for polygon completion.
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Convex Polygon Intersection

P

Q

P∩Q

Theorem: The intersection of an L-vertex convex polygon and an M-vertex 

convex polygon is a convex polygon of L+M vertices at most.

Proof: P∩Q is an intersection of L+M interior half planes determined by the 

two polygons.

Intersection of convex polygons can answer the question of whether two 

sets of points can be separated by a line.
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Theorem: The intersection of an L-vertex convex polygon and an M-vertex 

convex polygon can be found in θ(L+M) time.

Proof: Polygons are given in cyclic order of vertices. We start from the 

leftmost vertex of both polygons and progress along the border of both 

in a left-to-right fashion, defining O(L+M) slabs.

Inside a slab each polygon forms a trapezoid. The intersection of two 

trapezoids can be calculated in constant time.
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Another solution: The non empty intersection of two convex polygons 

forms a sequence of “sickles” enclosing the intersection. The border of a  

sickle comprises internal and external  sequence of vertices originating 

from P and Q, which are alternating in every sickle.

R=P∩Q
P

Q

sickle

Let P: (p1,p2,…,pL) and Q: (q1,q2,…,qM) be counterclockwise cyclically 

ordered. The algorithm advances such that ∂P and ∂Q are “chasing” one 

another, adjusting their speeds so that they meet at every intersection. 
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   

   

1

1

Let  and  be the vertices where the traversal is. 

and  are the current edges, defining the  half planes 

 and , containing  and ,  respectively.

Clearly . 

i j i i

j j

i j

i j

p q p p

q q

h p h q P Q

R h p h q







ip

jq

There are four possible situations of 

 and  with respect to . For each

an advancing rule is in order. The

idea is to progress  along boundary of

the "lagging" polygon.

i jp q R
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1 1

Advance is from  since there's no

chance for a future intersection point

in the edge  . Edge  may

have a future intersection with the

boundary of .

i

i i j j

p

p p q q

P

 
ip

jq

(a)

1

1

Edge  may still be intersected

later by ,  while  edge   have 

already exahusted its intersections.

Hence advance is from .

i i

j j

j

p p

Q q q

q





ip

jq

(b)
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Arbitrary choice. Advancing from

 yields case (a), while advancing

from  yields case (b).

j

i

q

p

1

1

Edge  may still be intersected

later by ,  while  edge   have

already exahusted its intersections.

Hence advance is from .

j j

i i

i

q q

P p p

p





ip
jq

(c)

ip jq

(d)
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 

1 1

 CONVEX_POLYGON_INTERSECT (  ,   ) {

   1;  1;   1;  

    ( 2  ) {

       (  and  intersect) { report intersection }

 

// initialization

// apply one     ADVANCE; 

i i j j

void polygon P polygon Q

i j k

while k L M

if p p q q 

  

 

      ;

   }

    (no intersection reported) {

       (  ) {  }

       (  ) {  }

 

 of (a), (b), (c)

       {  }

  

 or (d) case

}

}

s

 

i

j

k

if

if p Q P Q

elseif q P Q P

else Q P

 

 

 


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 If  and  belong to the

same sickle, the intersection point terminating the sickle

must be found since algorithm never ADVANCE along

the polygon whose current edge may contain

i jp qCorrecness of algorithm :

 a sought

intersection point.

This in turn guarantees that once an intersection point

of a sickle is found, all the others will be constructed

successively.
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To complete the proof we must show that an

intersection point must be found if . P Q  

 

1

1

Let the current edge  on , contain an

intersection point  with edge  on , so

.

i i

r r

i

p p P

v q q Q

v h p






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sC

rC

v

ip

1ip 

rq

1rq 

sq

farthest vertex
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v

sC

rC

ip

1ip 

rq

1rq 

sq

farthest vertex

case (a)

case (c)

case (d)case (b)

1

1

Let  be current edge and . Sequence of

cases (a), (c), (d) and (b) (possibly empty) occurs, while 

                                                      stays stationary,

               

j j j r

i i

q q q C

p p







                                                 until  is found.v
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1Let ,   be a line determined by  and 

 supporting  at  ,  the first

support reached when traversing

from  along  .

j s j j

m

i

q C l q q

l l P p

p P





1jq 

jq

mp

1rq 

rq

ip

1ip 

l l

1

A  sequence of cases (a)

starts at  and will stay

so until crossing ,

where case (c)

holds up to  (may be

empty).   stays stationary.

i

m

j j

p

l

p

q q
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1jq 

jq

m
p

1rq 

rq

ip

1ip 

l l

 

 

If    ADVANCE

continues  marching 

along  with cases (d)

and (b) until first

point 

is found.

m j

t j

p h q

P

p h q




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1If an edge like  exists,  steps must reach

it since the boundary of at least one polygon must be

consumed. 

i ip p L M 

 

If no intersection was found then the relations 

,   or  can be resolved

in  time.

P Q Q P P Q

O L M

  



 

Additional  ADVANCE steps suffice to

obtain all the intersection points in cyclic order,

yielding 2  total steps of ADVANCE.

L M

L M




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3D Viewing Concepts

World Coordinate System Viewing Coordinate System
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Choose viewing position, direction and orientation of the 

camera in the world.

A clipping window is defined by the size of the aperture 

and the lens.

Viewing by computing offers many more options which 

camera cannot, e.g., parallel or perspective projections, 

hiding parts of the scene, viewing behind obstacles, etc.

2D Reminder
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Clipping window: Selects what we want to see.

Viewport: Indicates where it is to be viewed on the output 

device (still in world coordinates).

Display window: Setting into screen coordinates.

In 3D the clipping is displayed on the view plane, but 

clipping of the scene takes place in the space by a clipping 

volume.

3D transformation pipeline is similar to 2D with addition of 

projection transformation.
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3D Viewing Transformation Pipeline

Transform Projection-

Coordinates to 

Normalized-

Coordinates

Normalized 

Coordinates
Map Normalized-

Coordinates to 

Device-Coordinates

Device 

Coordinates

Construct World-

Coordinate Scene 

From Modeling-

Coordinate 

Transformations

World 

Coordinates

Modeling 

Coordinates

Convert World-

Coordinates to 

Viewing-

Coordinates

Viewing

Coordinates

Projection

Transformation

Projection Coordinates
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Model is given in model (self) coordinates.

Conversion to world coordinates takes place.

Viewing coordinate system which defines the position and 

orientation of the projection plane (film plane in camera) is 

selected, to which scene is converted.

2D clipping window (lens of camera) is defined on the 

projection plane (film plane) and a 3D clipping, called view 

volume, is established.
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The shape and size of view volume is defined by the 

dimensions of clipping window, the type of projection and 

the limiting positions along the viewing direction.

Objects are mapped to normalized coordinated and all 

parts of the scene out of the view volume are clipped off.

The clipping is applied after all device independent 

transformation are completed, so efficient transformation 

concatenation is possible.

Few other tasks such as hidden surface removal and 

surface rendering take place along the pipeline.
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World to Viewing 3D Transformation

worldx

worldy

worldz viewx

viewy

viewz

v

n
u

0p

view point

view-up vector
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 

 

 

 0 0 0 0

:  viewing directionon

:  viewing plane

, ,

, ,

, ,

, ,

x y z

x y z

x y z

u u u

v v v

n n n

x y z











n

u v

u

v

n

p

viewx

viewy

viewz

v

n
u

0p

view point

view-up vector

0

0

WC,VC

0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1 0 0 0 1

x y z

x y z

x y z

u u u x

v v v y

n n n z

   
   


    
   
   
   

M

translationrotation

world to viewing 

transformation
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Projection Transformations

Projection can be perpendicular or oblique to viewing plane.

Preserves relative size of object’s portions.

Next step in 3D viewing pipeline is projection of object to 

viewing plane

Parallel Projection

Coordinate are transferred 

to viewing plane along 

parallel lines.

View Plane
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Perspective Projection

Projection lines converge 

in a point behind viewing 

plane.

Doesn’t preserve relative size but looks more realistic.
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Plane View

Side 

Elevation 

View

Front 

Elevation 

View

Used in engineering and architecture. Length and angles can be 

measured directly from drawings.

Orthogonal (orthographic) projections 

Projection lines are parallel to normal.
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Clipping Window and View Volume

Orthogonal Projection 

View Volume

Far 

Clipping 

Plane

Near 

Clipping 

Plane

View 

Plane

Clipping window

viewx

viewy

viewz



May 2010 58

Normalizing Orthogonal Projection

 1, 1, 1  

 1,1,1normz

normy

normx

Normalized View Volume

Display coordinate system is usually left-handed.

Orthogonal Projection View Volume

viewx

viewy

viewz

 min min near, ,xw yw z

 max max far, ,xw yw zw
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max min

max min max min

max min

max min max min

near far

near far near far

ortho,norm

2
0 0

2
0 0

2
0 0

0 0 0 1

xw xw

xw xw xw xw

yw yw

yw yw yw yw

z z

z z z z



 
  

 
  

 
 

 
 
 

  
  

M

WC,VCortho,norm

The complete transformation from world coordinated

to normalized orthogonal-projection coordinates is 

obtained by .M M
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Oblique Parallel Projections

Projection is defined by a viewing vector .pV

 , ,x y z

 , ,p p vpx y z

 , , vpx y z

L

pV

Projection lines are

parallel to vector .pV
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The above is called shear transformation, where the 

displacement in x and y linearly increases with z.

 , ,x y z

 , ,p p vpx y z

 , , vpx y z

L

pV

      ,  p vp px pz p vp py pzx x z z V V y y z z V V     

p py

vp pz

y y V

z z V






p px

vp pz

x x V

z z V






Not orthogonal 

as viewed
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View 

Volume

(Top)

View 

Volume

(Side)

Clipping 

Window

View Plane

Near 

Plane

Far 

Plane

pV

pV

View Volume of Parallel Oblique Projection
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oblique

1 0

0 1

0 0 1 0

0 0 0 1

px px

vp

pz pz

py py

vp

pz pz

V V
z

V V

V V
z

V V

 
 

 
 
  
 
 
 
  

M

This is a 3D shear 

transformation.

x and y are displaced by 

amount  proportional to z.

Normalization oblique projection is similar to orthogonal projection. 

The composite transformation is obtained by the product of the two.

oblique,norm ortho,norm oblique
 M M M
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Perspective Projections

Projection 

Reference 

Point

View Plane
Closer objects look larger.

 , ,x y zp

 , ,prp prp prp prpx y zp

 , ,p p vpx y z

viewx

viewy

viewz
View Plane

Projection Point
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   

   

 

Parametric representation of a point on the line

connecting , ,  with , , :

 ,   ,

 , 0 1.

prp prp prp prp

prp prp

prp

x y z x y z

x x x x u y y y y u

z z z z u u

 

      

     

P P

   At viewing plane: .vp prpu z z z z  

       

       

Substitution for the point on viewing plane:

p prp vp prp prp vp prp

p prp vp prp prp vp prp

x x z z z z x z z z z

y y z z z z y z z z z

     

     
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The problem with the above representation is that Z appears in 

denominator, so matrix multiplication representation of X and Y

on view plane as a function of Z is not straight forward.  

Z is point specific, hence division will be computation killer.  

Different representation is in order, so transformations can 

be concatenated
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Vanishing Points
Vanishing points occur when the viewing plane intersects with the 

axes of viewing coordinate system.

Vanishing 

Point

One-Point perspective Projection

x

y

z
Principle axes for cube

Parallel to Z lines of XZ plane and parallel lines to Z in YZ plane will 

vanish. Vanishing point on viewing plane correspond to infinity in world.
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Vanishing points of all  three axes occur when viewing plane 

intersects all three axes.

x-axis vanishing point

z-axis vanishing pointViewing plane is parallel to y-axis, 

intersecting both x-axis and z-axis
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Transformation Matrix

 

To get rid of  in denominator we define parameter

 and new homogeneous coordinates

, , , .

prp

h h h

z

h z z

x y z h

 

,  ,  yielding:p h p hx x h y y h 

   

   

, 

.

h prp vp prp vp

h prp vp prp vp

x x z z x z z

y y z z y z z

   

   
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    pers, , ,1 ,    , , , ,    ,h h h h hx y z x y z h   P P P M P

 is using a scaling factor  and translation .

 and  can  be  set  arbitrarily. We'll  set  those to satisfy

desired normalization. 

h z z z z

z z

z zs t s t

s t

 

Matrix Representation:

pers

0

0

0 0

0 0 1

prp vp prp prp prp

prp vp prp prp prp

z z

prp

z z x x z

z z y y z

s t

z

  
 

 
 
 
 

  

M h z zz zs t 
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Transformed  coordinate is very useful for deciding

later on the hidden parts of the scene.

z

Notice that drawing the perspective point requires a

division by .  depends on  coordinate, hence evey

point must be divided by a different number, w

very e

hic

xpe

h is

ve!nsi

h h z
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Perspective-Projection View Volume

Rectangular Frustum 

View Volume

Far 

Clipping 

Plane

Near 

Clipping 

Plane

View 

Plane

Clipping Window

viewx

viewy

viewz
Projection 

Reference Point



Field-of-view Angle
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Perspective 

Mapping

Clipping Window

View Plane

Near Plane

Far Plane

Symmetric Frustum 

View Volume

Projection 

Reference Point

Parallel Piped 

View Volume
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Perspective 

Mapping

Parallel Piped 

View Volume

Oblique Frustum 

View Volume

minxw maxxw

Projection 

Reference Point
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Oblique Perspective-Projection Frustum

   

We'll  take  the  projection reference  point to be the origin of viewing

coordinate system , , 0,0,0  and viewing plane at near

clipping plane. Oblique projection results shear transformation

prp prp prpx y z 

 min max min max
near near

. It 

transforms the intersection point of center-line with clipping window 

, ,  to 0,0, .
2 2

xw xw yw yw
z z

  
 
 

z shear

1 0 sh 0

0 1 sh 0

0 0 1 0

0 0 0 1

zx

zy

 
 
 
 
 
 

M

 

 
min max

min max

z shear

naer naer

0 2

0 2

1 1

xw xw

yw yw

Z Z

   
  

    
  
  

   

M
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min max min maxwhich solves to sh  and sh .
2 2

zx zy

xw xw yw yw 
   

   

near

near

pers

Substituting , , 0,0,0  in the perspective-projection

matrix and positioning the viewing near  clipping plane at the view

plane simplifies it to

0 0 0

0 0 0

0 0

0 0 1 0

prp prp prp

z z

x y z

z

z

z

s t



 
 


 
 
 

 

M

The  coordinate scaling factor  and the translation  will be 

determined by the normalization requirements.

z zz s t
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 

 
near min max

near min max

obliquepers pers z shear

The complete oblique perspective-projection is obtained by

concatenating the perspective and shear matrices.

0 2 0

0 2 0

0 0

0 0 1 0

z z

z xw xw

z yw yw

s t

  
 

    
 
 

 

M M M

 min max min max

near

near

symmetricpers pers z shear

For symmetric viewing volume  ,  .

Transformation is simplified to:

0 0 0

0 0 0

0 0

0 0 1 0

z z

xw xw yw yw

z

z

s t

   

 
 


   
 
 

 

M M M
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Normalized Perspective-Projection

 

 

normpers  scale obliquepers

near min max

near min max

Normalization is obtained by multiplying with standard scaling matrix.

0 2 0

0 2 0

0 0

0 0 1 0

xy

x x

y y

z z

z s s xw xw

z s s yw yw

s t

 

  
 

  
 
 

 

M M M

normpers

Homogenous coordinates
   

are obtained as follows:    

1

h

h

h

x x

y y

z z

h

   
   
   
   
   
   

M
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 

 

 

near min max

near min max

Projection coordinates are:

2 ,

2 ,

.

p h x x

p h y y

p h z z

x x h z s x s xw xw z z

y y h z s y s yw yw z z

z z h s z t z

       

       

   

       

   

   

min min near max max far

max min max min

near far near far

We'd like normalization transform to result:

, , 1, 1, 1  and , , 1,1,1 .

Substitution in above equations yields:

2 ,  2 ,

,  t 2

x y

z z

xw yw z xw yw z

s xw xw s yw yw

s z z z z

    

   

      near far near far .z z z z
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near min max

max min max min

near min max

max min max minnormpers

near far near far

near far ne

Back substitution in the normalized perspective transformation yields:

2
0 0

2
0 0

2
0 0

z xw xv

xw xw xw xw

z yw yw

yw yw yw yw

z z z z

z z z

 

 

 

 






M

ar far

0 0 1 0

z

 
 
 
 
 
 
 
 

 
  

No division by z!
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3D Viewport Transformation

 

   

 

min min

max max

The normalized  view volume  cube extending  from 1, 1, 1  to

1,1,1  is mapped to a screen viewport, extending from ,

to , .  information is stored for depth calculations.   is 

often

xv yv

xv yv z z

  

max min max min

max min max min

normviewvol,

3D screen     

 renormalized to the range from 0 to 1.0, yielding:

0 0
2 2

0 0
2 2

1 1
0 0

2 2

0 0 0 1

xv xv xv xv

yv yv yv yv

  
 
 

  
 
 
 
 
 
 

M
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Settings of Perspective Projection

• Perspective projection point

– Where the viewer (camera, eye) is positioned in the world.

• Positioning viewing plane with respect to viewing 

coordinates

– Results vanishing points, one, two or three.

• Clipping window on viewing plane

– Defines the infinite pyramid view volume.

• Near and far clipping planes (parallel to view plane)

– Define the rectangular frustum view volume.

• Scale and translation parameters of perspective matrix

– Define the normalization range.
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3D Clipping

min min min max max max

Clipping can take place on normalized cube:

1,  1,  1,  1,  1,  1.xw yw zw xw yw zw        

Top bit Bottom bit Right bit Left bitFar bit Near bit

Similar to 2D, we add two bits to code the far and near planes.

 

Recall that in 3D point is represented in homogeneous form. Hence

, , ,  is inside the normalized cube iff

, , if 0

, , if 0

h h h

h h h

h h h

x y z h

h x h h y h h z h h

h x h h y h h z h h



         

         

P
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Left

Right

Top

Bottom

Far

Near

x

z

y

011001 011000 011010

010001 010000 010010

010101 010100 010110

001001 001000 001010

000001 000000 000010

000101 000100 000110

101001 101000 101010

100001 100000 100010

100101 100100 100110
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A line is completely accepted if the codes of its ends are both 000000, or 

equivalently, if the logical OR between codes is zero.

A line is rejected if the codes of its ends has at least one 1 in same bit, or 

equivalently, if the logical AND between codes is nonzero.

Otherwise, the line is tested against each of the planes and the 2D Liang-

Barsky algorithm can be extended to 3D. 

 

   

1 1 1

2 2 2

1 2 1 1

2 2 1 2 1

A point  of a line segment  extending from , , ,

to , , ,  is given by ,   0 1.

h h h

h h h

x y z h

x y z h u u



     

P P P P

P P P P P
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   
1 2 1

1 2

max

1 2 1

If for instance the codes of the two end points of  w.r.t the right 

clipping plane 1 are different, the intersection point is derived

from 1.

Solving for  

p h h h h

x

x x h x x x u h h h u

u



          

P P

   
1 1 21 1 2yields .h h hu x h x h x h         

0 1 1 0

1 0

Such calculation proceeds for each ,  1 6,  while

updating  and . If at some iteration ,  line segment is

completely clipped. If upon termination ,  the end points

of the clipped line s

k kup q k

u u u u

u u

  





egment are obtained.


