
10/7/04 © University of Wisconsin, CS559 Fall 2004

Last Time

• Transformations

• Homogeneous coordinates

• Directions

• Rotation

• Geometry 101 – Points, edges, triangles/polygons

• Homework 3 due Oct 12 in class

10/7/04 © University of Wisconsin, CS559 Fall 2004

Today

• Viewing Transformations

• Describing Cameras and Views

10/7/04 © University of Wisconsin, CS559 Fall 2004

Graphics Pipeline

• Graphics hardware employs a sequence of coordinate
systems
– The location of the geometry is expressed in each coordinate system

in turn, and modified along the way

– The movement of geometry through these spaces is considered a
pipeline

Local

Coordinate

Space

World

Coordinate

Space

View

Space

Canonical

View

Volume

Display

Space

10/7/04 © University of Wisconsin, CS559 Fall 2004

Local Coordinate Space

• It is easiest to define individual objects in a local coordinate

system

– For instance, a cube is easiest to define with faces parallel to the

coordinate axes

• Key idea: Object instantiation

– Define an object in a local coordinate system

– Use it multiple times by copying it and transforming it into the

global system

– This is the only effective way to have libraries of 3D objects

10/7/04 © University of Wisconsin, CS559 Fall 2004

World Coordinate System

• Everything in the world is transformed into one coordinate

system - the world coordinate system

– It has an origin, and three coordinate directions, x, y, and z

• Lighting is defined in this space

– The locations, brightness’ and types of lights

• The camera is defined with respect to this space

• Some higher level operations, such as advanced visibility

computations, can be done here

10/7/04 © University of Wisconsin, CS559 Fall 2004

View Space

• Define a coordinate system based on the eye and image

plane – the camera

– The eye is the center of projection, like the aperture in a camera

– The image plane is the orientation of the plane on which the image

should “appear,” like the film plane of a camera

• Some camera parameters are easiest to define in this space

– Focal length, image size

• Relative depth is captured by a single number in this space

– The “normal to image plane” coordinate

10/7/04 © University of Wisconsin, CS559 Fall 2004

Canonical View Volume

• Canonical View Space: A cube, with the origin at the
center, the viewer looking down –z, x to the right, and y
up

– Canonical View Volume is the cube: [-1,1]×[-1,1]×[-1,1]

– Variants (later) with viewer looking down +z and z from 0-1

– Only things that end up inside the canonical volume can appear in
the window

• Tasks: Parallel sides and unit dimensions make many
operations easier
– Clipping – decide what is in the window

– Rasterization - decide which pixels are covered

– Hidden surface removal - decide what is in front

– Shading - decide what color things are

10/7/04 © University of Wisconsin, CS559 Fall 2004

Window Space

• Window Space: Origin in one corner of the “window” on

the screen, x and y match screen x and y

• Windows appear somewhere on the screen

– Typically you want the thing you are drawing to appear in your

window

– But you may have no control over where the window appears

• You want to be able to work in a standard coordinate system

– your code should not depend on where the window is

• You target Window Space, and the windowing system takes

care of putting it on the screen

10/7/04 © University of Wisconsin, CS559 Fall 2004

Canonical  Window Transform

• Problem: Transform the Canonical View Volume into

Window Space (real screen coordinates)

– Drop the depth coordinate and translate

– The graphics hardware and windowing system typically take care of

this – but we’ll do the math to get you warmed up

• The windowing system adds one final transformation to get

your window on the screen in the right place

10/7/04 © University of Wisconsin, CS559 Fall 2004

Canonical  Window Transform

• Typically, windows are specified by a corner, width and

height

– Corner expressed in terms of screen location

– This representation can be converted to (xmin,ymin) and (xmax,ymax)

• We want to map points in Canonical View Space into the

window

– Canonical View Space goes from (-1,-1,-1) to (1,1,1)

– Lets say we want to leave z unchanged

• What basic transformations will be involved in the total

transformation from 3D screen to window coordinates?

10/7/04 © University of Wisconsin, CS559 Fall 2004

Canonical  Window Transform

(-1,-1)

(1,1)

(xmin,ymin)

(xmax,ymax)

10/7/04 © University of Wisconsin, CS559 Fall 2004

Canonical  Window Transform

(-1,-1)

(1,1)

(xmin,ymin)

(xmax,ymax)

   
   





























































11000

0100

2020

2002

1

minmaxminmax

minmaxminmax

canonical

canonical

canonical

pixel

pixel

pixel

z

y

x

yyyy

xxxx

z

y

x

10/7/04 © University of Wisconsin, CS559 Fall 2004

Canonical  Window Transform

• You almost never have to worry about the canonical to window

transform

• In OpenGL, you tell it which part of your window to draw in – relative

to the window’s coordinates

– That is, you tell it where to put the canonical view volume

– You must do this whenever the window changes size

– Window (not the screen) has origin at bottom left

– glViewport(minx, miny, maxx, maxy)

– Typically: glViewport(0, 0, width, height)fills the entire

window with the image

– Why might you not fill the entire window?

• The textbook derives a different transform, but the same idea

10/7/04 © University of Wisconsin, CS559 Fall 2004

View Volumes

• Only stuff inside the Canonical View Volume gets drawn

– The window is of finite size, and we can only store a finite number

of pixels

– We can only store a discrete, finite range of depths

• Like color, only have a fixed number of bits at each pixel

– Points too close or too far away will not be drawn

– But, it is inconvenient to model the world as a unit box

• A view volume is the region of space we wish to transform

into the Canonical View Volume for drawing

– Only stuff inside the view volume gets drawn

– Describing the view volume is a major part of defining the view

10/7/04 © University of Wisconsin, CS559 Fall 2004

Orthographic Projection

• Orthographic projection projects all the
points in the world along parallel lines onto
the image plane
– Projection lines are perpendicular to the image

plane

– Like a camera with infinite focal length

• The result is that parallel lines in the world
project to parallel lines in the image, and
ratios of lengths are preserved
– This is important in some applications, like

medical imaging and some computer aided design
tasks

10/7/04 © University of Wisconsin, CS559 Fall 2004

Orthographic View Space

z

y

x

• View Space: a coordinate system with the viewer looking in the –z

direction, with x horizontal to the right and y up

– A right-handed coordinate system! All ours will be

• The view volume is a rectilinear box for orthographic projection

• The view volume has:

– a near plane at z=n

– a far plane at z=f , (f < n)

– a left plane at x=l

– a right plane at x=r, (r>l)

– a top plane at y=t

– and a bottom plane at y=b, (b<t)

(r,b,n)

(l,t,f)

10/7/04 © University of Wisconsin, CS559 Fall 2004

Rendering the Volume

• To find out where points end up on the screen, we must

transform View Space into Canonical View Space

– We know how to draw Canonical View Space on the screen

• This transformation is “projection”

• The mapping looks similar to the one for Canonical to

Window …

10/7/04 © University of Wisconsin, CS559 Fall 2004

Orthographic Projection Matrix
(Orthographic View to Canonical Matrix)

 
 

 

 
 
 

     
     

     

viewcanonicalviewcanonical

view

view

view

canonical

canonical

canonical

z

y

x

fnfnfn

btbtbt

lrlrlr

fn

bt

lr

fn

bt

lr

z

y

x

xMx 

















































































































11000

200

020

002

1000

2100

2010

2001

1000

0200

0020

0002

1

10/7/04 © University of Wisconsin, CS559 Fall 2004

Defining Cameras

• View Space is the camera’s local coordinates

– The camera is in some location

– The camera is looking in some direction

– It is tilted in some orientation

• It is inconvenient to model everything in terms of View

Space

– Biggest problem is that the camera might be moving – we don’t

want to have to explicitly move every object too

• We specify the camera, and hence View Space, with respect

to World Space

– How can we specify the camera?

10/7/04 © University of Wisconsin, CS559 Fall 2004

Specifying a View

• The location of View Space with respect to World Space

– A point in World Space for the origin of View Space, (ex,ey,ez)

• The direction in which we are looking: gaze direction

– Specified as a vector: (gx,gy,gz)

– This vector will be normal to the image plane

• A direction that we want to appear up in the image

– (upx,upy,upz), this vector does not have to be perpendicular to g

• We also need the size of the view volume – l,r,t,b,n,f

– Specified with respect to the eye and image plane, not the world

10/7/04 © University of Wisconsin, CS559 Fall 2004

General Orthographic

(0,0) x

y

e

image plane g

b,n

b,f

t,n

t,f

Subtle point: it doesn’t

precisely matter where we

put the image plane

10/7/04 © University of Wisconsin, CS559 Fall 2004

Getting there…

• We wish to end up in View Space, so we need a coordinate

system with:

– A vector toward the viewer, View Space z

– A vector pointing right in the image plane, View Space x

– A vector pointing up in the image plane, View Space y

– The origin at the eye, View Space (0,0,0)

• We must:

– Say what each of these vectors are in World Space

– Transform points from the World Space into View Space

– We can then apply the orthographic projection to get to Canonical

View Space, and so on

10/7/04 © University of Wisconsin, CS559 Fall 2004

View Space in World Space

• Given our camera definition, in World Space:

– Where is the origin of view space? It will transform into (0,0,0)view

– What is the normal to the view plane, w? It will become zview

– How do we find the right vector, u? It will become xview

– How do we find the up vector, v? It will become yview

• Given these points, how do we do the transformation?

10/7/04 © University of Wisconsin, CS559 Fall 2004

View Space

• The origin is at the eye: (ex,ey,ez)

• The normal vector is the normalized viewing direction:

• We know which way up should be, and we know we have a

right handed system, so u=up×w, normalized:

• We have two vectors in a right handed system, so to get the

third: v=w×u

gw ˆ

û

10/7/04 © University of Wisconsin, CS559 Fall 2004

World to View

• We must translate so the origin is at (ex,ey,ez)

• To complete the transformation we need to do a rotation

• After this rotation:

– The direction u in world space should be the direction (1,0,0) in

view space

– The vector v should be (0,1,0)

– The vector w should be (0,0,1)

• The matrix that does the rotation is:

– It’s a “change of basis” matrix



















1000

0

0

0

zyx

zyx

zyx

www

vvv

uuu

10/7/04 © University of Wisconsin, CS559 Fall 2004

All Together

• We apply a translation and then a rotation, so the result is:

• And to go all the way from world to screen:







































































10001000

100

010

001

1000

0

0

0

ew

ew

ew

M
zyx

zyx

zyx

z

y

x

zyx

zyx

zyx

viewworld
www

vvv

uuu

e

e

e

www

vvv

uuu

worldcanonicalworldcanonical

viewworldcanonicalviewcanonicalworld

xMx

MMM









10/7/04 © University of Wisconsin, CS559 Fall 2004

OpenGL and Transformations

• OpenGL internally stores two matrices that control viewing of the scene

– The GL_MODELVIEW matrix is intended to capture all the transformations

up to view space

– The GL_PROJECTION matrix captures the view to canonical conversion

• You also specify the mapping from the canonical view volume into

window space

– Directly through a glViewport function call

• Matrix calls, such as glRotate, multiply some matrix M onto the

current matrix C, resulting in CM

– Set view transformation first, then set transformations from local to world

space – last one set is first one applied

– This is the convenient way for modeling, as we will see

10/7/04 © University of Wisconsin, CS559 Fall 2004

OpenGL Camera

• The default OpenGL image plane has u aligned with the x axis, v

aligned with y, and n aligned with z

– Means the default camera looks along the negative z axis

– Makes it easy to do 2D drawing (no need for any view transformation)

• glOrtho(…) sets the view->canonical matrix

– Modifies the GL_PROJECTION matrix

• gluLookAt(…) sets the world->view matrix

– Takes an image center point, a point along the viewing direction and an up

vector

– Multiplies a world->view matrix onto the current GL_MODELVIEW

matrix

– You could do this yourself, using glMultMatrix(…) with the matrix

from the previous slides

10/7/04 © University of Wisconsin, CS559 Fall 2004

Typical Usage

• GLU functions, such as gluLookAt(…), are not part of the core

OpenGL library

– They can be implemented with other core OpenGL commands

– For example, gluLookAt(…) uses glMultMatrix(…)with the matrix

from the previous slides

– They are not dependent on a particular graphics card

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(l, r, b, t, n, f);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(ex,ey,ez,cx,cy,cx,ux,uy,uz);

10/7/04 © University of Wisconsin, CS559 Fall 2004

Left vs Right Handed View

Space

• You can define u as right, v as up, and n as toward the

viewer: a right handed system uv=w

– Advantage: Standard mathematical way of doing things

• You can also define u as right, v as up and n as into the

scene: a left handed system vu=w

– Advantage: Bigger n values mean points are further away

• OpenGL is right handed

• Many older systems, notably the Renderman standard

developed by Pixar, are left handed

