g Last Time

« Transformations

« Homogeneous coordinates

« Directions

» Rotation

« Geometry 101 — Points, edges, triangles/polygons
 Homework 3 due Oct 12 in class

10/7/04 © University of Wisconsin, CS559 Fall 2004

[ty Today

* Viewing Transformations
» Describing Cameras and Views

10/7/04 © University of Wisconsin, CS559 Fall 2004

a7 Graphics Pipeline

 Graphics hardware employs a sequence of coordinate
systems

— The location of the geometry is expressed in each coordinate system
in turn, and modified along the way

— The movement of geometry through these spaces is considered a

pipeline
Local World View Canonical Display
Coordinate [| Coordinate | Space ' View | Space
Space Space Volume

10/7/04 © University of Wisconsin, CS559 Fall 2004

._"; Local Coordinate Space

It Is easiest to define individual objects in a local coordinate

system
— For instance, a cube is easiest to define with faces parallel to the
coordinate axes

« Key idea: Object instantiation
— Define an object in a local coordinate system

— Use it multiple times by copying it and transforming it into the
global system
— This is the only effective way to have libraries of 3D objects

10/7/04 © University of Wisconsin, CS559 Fall 2004

~, { '/ World Coordinate System

 Everything in the world is transformed into one coordinate
system - the world coordinate system
— It has an origin, and three coordinate directions, X, y, and z
 Lighting is defined in this space
— The locations, brightness’ and types of lights
« The camera is defined with respect to this space

« Some higher level operations, such as advanced visibility
computations, can be done here

10/7/04 © University of Wisconsin, CS559 Fall 2004

Wiy View Space

» Define a coordinate system based on the eye and image
plane — the camera
— The eye is the center of projection, like the aperture in a camera

— The image plane is the orientation of the plane on which the image
should “appear,” like the film plane of a camera

« Some camera parameters are easiest to define in this space
— Focal length, image size

 Relative depth is captured by a single number in this space

— The “normal to image plane” coordinate

10/7/04 © University of Wisconsin, CS559 Fall 2004

'/ Canonical View Volume

« Canonical View Space: A cube, with the origin at the
center, the viewer looking down —z, x to the right, and y
up

— Canonical View Volume is the cube: [-1,1]x[-1,1]%[-1,1]

— Variants (later) with viewer looking down +z and z from 0-1

— Only things that end up inside the canonical volume can appear in
the window

 Tasks: Parallel sides and unit dimensions make many
operations easier

— Clipping — decide what is in the window

— Rasterization - decide which pixels are covered
— Hidden surface removal - decide what is in front
— Shading - decide what color things are

10/7/04 © University of Wisconsin, CS559 Fall 2004

il Window Space

* Window Space: Origin in one corner of the “window” on
the screen, x and y match screen x and y

» Windows appear somewhere on the screen

— Typically you want the thing you are drawing to appear in your
window

— But you may have no control over where the window appears

» You want to be able to work in a standard coordinate system
— your code should not depend on where the window is

 You target Window Space, and the windowing system takes
care of putting it on the screen

10/7/04 © University of Wisconsin, CS559 Fall 2004

'/ Canonical — Window Transform

* Problem: Transform the Canonical View Volume into
Window Space (real screen coordinates)
— Drop the depth coordinate and translate
— The graphics hardware and windowing system typically take care of
this — but we’ll do the math to get you warmed up
» The windowing system adds one final transformation to get
your window on the screen in the right place

10/7/04 © University of Wisconsin, CS559 Fall 2004

./ Canonical > Window Transform

A

\
v

« Typically, windows are specified by a corner, width and
height
— Corner expressed in terms of screen location
— This representation can be converted to (X, Yimin) @Nd Xrax:Ymax)

« \We want to map points in Canonical View Space into the
window
— Canonical View Space goes from (-1,-1,-1) to (1,1,1)
— Lets say we want to leave z unchanged

 What basic transformations will be involved in the total
transformation from 3D screen to window coordinates?

10/7/04 © University of Wisconsin, CS559 Fall 2004

Canonical — Window Transform

(1.1)

(Xmax ’ymax)

(Xmin’ymin) .

(-1-1)

10/7/04

© University of Wisconsin, CS559 Fall 2004

'/ Canonical - Window Transform

(1 J 1) 4 (Xmax’ymax)
-
(Xmin’ymin) .
(_11_1)

_Xpixel | _(erx ~ Xpin)/2 0 0 (erx * Xnin)/2__Xcanonical_
ypixel _ 0 (ymax - ym’n)/2 0 (yrrax + ym’n)/2 ycanonical
Zpixel 0 1 0 Zcanonical

1] 0 0 |

10/7/04 © University of Wisconsin, CS559 Fall 2004

Canonical — Window Transform

 You almost never have to worry about the canonical to window
transform

* In OpenGL, you tell it which part of your window to draw in — relative
to the window’s coordinates

That is, you tell it where to put the canonical view volume

You must do this whenever the window changes size

Window (not the screen) has origin at bottom left

glViewport (minx, miny, maxx, maxy)

Typically: glviewport (0, 0, width, height) fillsthe entire
window with the image

Why might you not fill the entire window?

 The textbook derives a different transform, but the same idea

10/7/04

© University of Wisconsin, CS559 Fall 2004

Wiy View Volumes

 Only stuff inside the Canonical View Volume gets drawn

— The window is of finite size, and we can only store a finite number
of pixels

— We can only store a discrete, finite range of depths
 Like color, only have a fixed number of bits at each pixel

— Points too close or too far away will not be drawn
— But, it is inconvenient to model the world as a unit box

« Aview volume is the region of space we wish to transform
Into the Canonical View Volume for drawing
— Only stuff inside the view volume gets drawn
— Describing the view volume is a major part of defining the view

10/7/04 © University of Wisconsin, CS559 Fall 2004

10/7/04

Orthographic Projection

Orthographic projection projects all the
points in the world along parallel lines onto
the image plane

— Projection lines are perpendicular to the image
plane

— Like a camera with infinite focal length

The result is that parallel lines in the world
project to parallel lines in the image, and
ratios of lengths are preserved

— This Is important in some applications, like
medical imaging and some computer aided design
tasks

© University of Wisconsin, CS559 Fall 2004

./ Orthographic View Space

« View Space: a coordinate system with the viewer looking in the -z
direction, with x horizontal to the right and y up

— Arright-handed coordinate system! All ours will be
« The view volume is a rectilinear box for orthographic projection
e The view volume has:

— anear plane at z=n y p (1,t.9)

— afarplane at z=f, (f <n)

— aleft plane at x=I Z—k

— aright plane at x=r, (r>1) X

— atop plane at y=t (r,b,n)
— and a bottom plane at y=Db, (b<t)

10/7/04 © University of Wisconsin, CS559 Fall 2004

i/ Rendering the Volume

Ay

 To find out where points end up on the screen, we must
transform View Space into Canonical View Space
— We know how to draw Canonical View Space on the screen

 This transformation is “projection”

» The mapping looks similar to the one for Canonical to
Window ...

10/7/04 © University of Wisconsin, CS559 Fall 2004

11/ Orthographic Projection Matrix

A (Orthographic View to Canonical Matrix)
Xeonica | [2/(r=1) 0 0 01t 0 0 —(r+l1)/2"
Y eanonical 0 2/(t-b) 0 00 1 0 —(t+b)/2
2. || o 0 2/(n-f) 0)0 0 1 —(n+f)2
1 || 0 0 0 1]0 0 O 1
2/(r—1) 0 0 —(r+1)/(r=1) T x4,
0 2/(t-b) 0 —(t+b)/{t=b) | Yiien
|0 0 2/(n—f) —(n+f)/(n=1)| z,.,
0 0 0 1 i1
X canonical = M yiew_scanonicaview

10/7/04 © University of Wisconsin, CS559 Fall 2004

L Defining Cameras

* View Space is the camera s local coordinates
— The camera is in some location
— The camera is looking in some direction
— ltis tilted in some orientation
* It is inconvenient to model everything in terms of View
Space

— Biggest problem is that the camera might be moving — we don’t
want to have to explicitly move every object too

» \We specify the camera, and hence View Space, with respect
to World Space
— How can we specify the camera?

10/7/04 © University of Wisconsin, CS559 Fall 2004

Ly Specifying a View

» The location of View Space with respect to World Space
— A point in World Space for the origin of View Space, (e,.e,.e,)

« The direction in which we are looking: gaze direction
— Specified as a vector: (g,,9,,9,)
— This vector will be normal to the image plane

» Adirection that we want to appear up in the image
— (upy,up,,up,), this vector does not have to be perpendicular to g

* \We also need the size of the view volume — I,r,t,b,n,f
— Specified with respect to the eye and image plane, not the world

10/7/04 © University of Wisconsin, CS559 Fall 2004

{j General Orthographic

Subtle point: it doesn’t
precisely matter where we
put the image plane

Image plane -
T tn

0,0) x b,n

10/7/04 © University of Wisconsin, CS559 Fall 2004

Getting there...

« \We wish to end up in View Space, so we need a coordinate
system with:
— A vector toward the viewer, View Space z
— A vector pointing right in the image plane, View Space x
— A vector pointing up in the image plane, View Space y
— The origin at the eye, View Space (0,0,0)
* We must:
— Say what each of these vectors are in World Space

— Transform points from the World Space into View Space

— We can then apply the orthographic projection to get to Canonical
View Space, and so on

10/7/04 © University of Wisconsin, CS559 Fall 2004

'/ View Space in World Space

 Given our camera definition, in World Space:
— Where is the origin of view space? It will transform into (0,0,0) ..,
— What is the normal to the view plane, w? It will become z
— How do we find the right vector, u? It will become X,
— How do we find the up vector, v? It will become y,;.,,

» Given these points, how do we do the transformation?

view

10/7/04 © University of Wisconsin, CS559 Fall 2004

G View Space

» The origin is at the eye: (e,.e,,€,)
 The normal vector is the normalized viewing direction: w=—§

* \We know which way up should be, and we know we have a
right handed system, so u=up xw, normalized:

* \We have two vectors in a right handed system, so to get the
third: v=w xu

10/7/04 © University of Wisconsin, CS559 Fall 2004

(3 World to View

» We must translate so the origin is at (e,,e,.€,)
« To complete the transformation we need to do a rotation

« After this rotation:

— The direction u in world space should be the direction (1,0,0) in
view space

— The vector v should be (0,1,0)
— The vector w should be (0,0,1) _ _

. . - ux u uZ 0

e The matrix that does the rotation is: y Vy v 0
— It’s a “change of basis” matrix A

w, w, w, 0

0 0 0 1]

10/7/04 © University of Wisconsin, CS559 Fall 2004

) All Together

« \We apply a translation and then a rotation, so the result is:

uo u, u, 01 0 0 —e] [u, u,
M v vy, 010 1 0 —e | |V,
world—>view — w, W, W, 00 0 1 -e, - W, W,
0 0 0 1/0 00 1| |0 O

« And to go all the way from world to screen:
M =M M

world—>canonical ~— view—>canonical
X

=M

canonical — World—>canonicalxworld

world—>view

10/7/04 © University of Wisconsin, CS559 Fall 2004

u

z

Vv

z

W

z

0

—Wee|

—Wee

—Wee
1

/" OpenGL and Transformations

g N
v

« OpenGL internally stores two matrices that control viewing of the scene

— The GL_MODELVIEW matrix is intended to capture all the transformations
up to view space

— The GL_PROJECTION matrix captures the view to canonical conversion
* You also specify the mapping from the canonical view volume into
window space
— Directly through a g1lviewport function call
« Matrix calls, such as glRotate, multiply some matrix M onto the
current matrix C, resulting in CM

— Set view transformation first, then set transformations from local to world
space — last one set is first one applied

— This is the convenient way for modeling, as we will see

10/7/04 © University of Wisconsin, CS559 Fall 2004

& OpenGL Camera

« The default OpenGL image plane has u aligned with the x axis, v
aligned with y, and n aligned with z

— Means the default camera looks along the negative z axis

— Makes it easy to do 2D drawing (no need for any view transformation)
e glOrtho (..) setsthe view->canonical matrix

— Modifies the GL_ PROJECTION matrix

« gluLookAt (..) setsthe world->view matrix

— Takes an image center point, a point along the viewing direction and an up
vector

— Multiplies a world->view matrix onto the current GL_MODELVIEW
matrix

— You could do this yourself, using g1lMultMatrix (..) with the matrix
from the previous slides

10/7/04 © University of Wisconsin, CS559 Fall 2004

(sl Typical Usage

glMatrixMode (GL PROJECTION) ;
glLoadIdentity () ;

glOrtho(l, r, b, t, n, £f);
glMatrixMode (GL MODELVIEW) ;
glLoadIdentity () ;

gluLookAt (ex,ey,ez,CcX,Cy,CX,Ux,uy,uz) ;

« GLU functions, such as gluLookAt (..), are not part of the core
OpenGL library
— They can be implemented with other core OpenGL commands

— Forexample, gluLookAt (...) uses glMultMatrix (..) with the matrix
from the previous slides

— They are not dependent on a particular graphics card

10/7/04 © University of Wisconsin, CS559 Fall 2004

1) Leftvs Right Handed View
Space

* You can define u as right, v as up, and n as toward the
viewer: a right handed system uxv=w
— Advantage: Standard mathematical way of doing things

 You can also define u as right, v as up and n as into the
scene: a left handed system vxu=w
— Advantage: Bigger n values mean points are further away

* OpenGL is right handed

« Many older systems, notably the Renderman standard
developed by Pixar, are left handed

10/7/04 © University of Wisconsin, CS559 Fall 2004

