

#### Computer Graphics and Interaction DH2323 / Spring 2015 / P4

#### **Bezier Curves, Splines and Surfaces**

#### de Casteljau Algorithm · Bernstein Form Bezier Splines Tensor Product Surfaces · Total Degree Surfaces

Prof. Dr. Tino Weinkauf

### Lab assignment

Lab help session

this Friday, May 8<sup>th</sup>

in the VIC from 15:00-17:00

**Bezier Curves** de Casteljau algorithm

- Paul de Casteljau (1959) @ Citroën
- Pierre Bezier (1963) @ Renault

Meine Zeit bei Citroën / My time at Citroën see the PDF deCasteljau\_de.pdf and deCasteljau\_en.pdf in the download area of the webpage

### **Bezier curves**

#### History:

- Bezier curves/splines developed by
  - Paul de Casteljau at Citroën (1959)
  - Pierre Bézier at Renault (1963)

for free-form parts in automotive design

- Today: Standard tool for 2D curve editing
- Cubic 2D Bezier curves are everywhere:
  - Postscript, PDF, Truetype (quadratic curves), Windows GDI...
  - Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, ...
- Widely used in 3D curve & surface modeling as well

#### All You See is Bezier Curves...

# **Bezier Splines**

#### **History:**

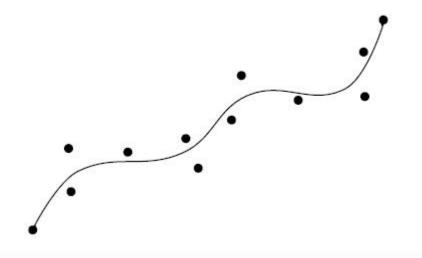
- Bezier splines developed
  - by Paul de Casteljau at Citroë
  - Diarra Dáziar at Danault (106

ezier

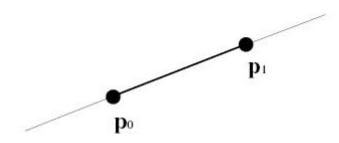
**Approximation setting:** 

**Given: p**<sub>0</sub>, ..., **p**<sub>n</sub>

Wanted: smooth, approximating curve



#### **Linear interpolation**



 $\mathbf{x}(t) = (1-t) \cdot \mathbf{p}_0 + t \cdot \mathbf{p}_1$ 

#### **Parabolas**

$$\mathbf{x}(t) = \mathbf{p}_0 + t \cdot \mathbf{p}_1 + t^2 \cdot \mathbf{p}_2$$

#### → planar curve, even if defined in R<sup>3</sup>

**Example:** 

$$\mathbf{p}_{0} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} , \quad \mathbf{p}_{1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} , \quad \mathbf{p}_{2} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

$$\mathbf{p}_{2} \qquad \mathbf{p}_{0}$$

$$\mathbf{p}_{2} \qquad \mathbf{p}_{0} \qquad \mathbf{p}_{1}$$

Another parabola construction

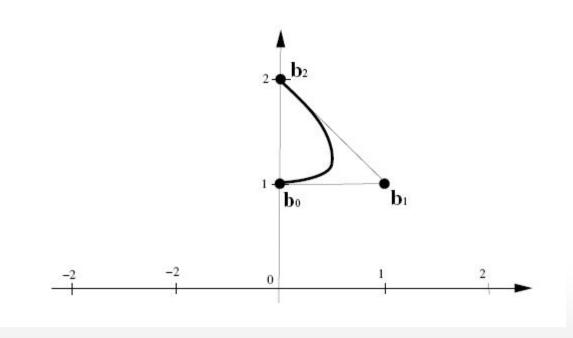
given: 3 points b<sub>0</sub>, b<sub>1</sub>, b<sub>2</sub>

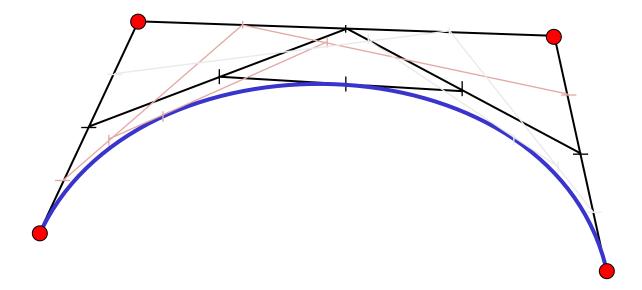
$$\mathbf{b}_0^1 = (1 - t) \cdot \mathbf{b}_0 + t \cdot \mathbf{b}_1$$
$$\mathbf{b}_1^1 = (1 - t) \cdot \mathbf{b}_1 + t \cdot \mathbf{b}_2$$
$$\mathbf{b}_0^2 = (1 - t) \cdot \mathbf{b}_0^1 + t \cdot \mathbf{b}_1^1$$
$$\stackrel{\text{L}}{\longrightarrow} \text{ parabola x(t)}$$

$$\mathbf{x}(t) = (1-t)^2 \cdot \mathbf{b}_0 + 2 \cdot t \cdot (1-t) \cdot \mathbf{b}_1 + t^2 \cdot \mathbf{b}_2$$

#### Example

$$\mathbf{b}_0 = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad , \quad \mathbf{b}_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \quad , \quad \mathbf{b}_2 = \begin{pmatrix} 0\\2\\0 \end{pmatrix}$$





#### **De Casteljau Algorithm:** Computes *x*(*t*) for given *t*

- Bisect control polygon in ratio t: (1-t)
- Connect the new dots with lines (adjacent segments)
- Interpolate again with the same ratio
- Iterate, until only one point is left

#### Description of the de Casteljau algorithm

- given: points  $\mathbf{b}_0, \mathbf{b}_1, ..., \mathbf{b}_n \in \mathbb{R}^3$
- wanted: curve  $\mathbf{x}(t), t \in [0, 1]$
- geometric construction of the point x(t) for given t:

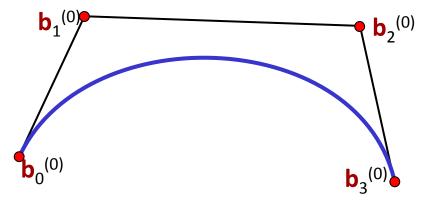
$$\mathbf{b}_i^0(t) = \mathbf{b}_i \qquad \text{für } i = 0, ..., n$$

$$\mathbf{b}_{i}^{r}(t) = (1-t) \cdot \mathbf{b}_{i}^{r-1}(t) + t \cdot \mathbf{b}_{i+1}^{r-1}(t)$$
  
für  $r = 1, ..., n$ ;  $i = 0, ..., n - r$ .

 Then, b<sup>n</sup><sub>0</sub>(t) is the searched curve point x(t) at the parameter value t

repeated convex combination of control points

 $\mathbf{b}_{i}^{(r)} = (1-t) \cdot \mathbf{b}_{i}^{(r-1)} + t \cdot \mathbf{b}_{i+1}^{(r-1)}$ 



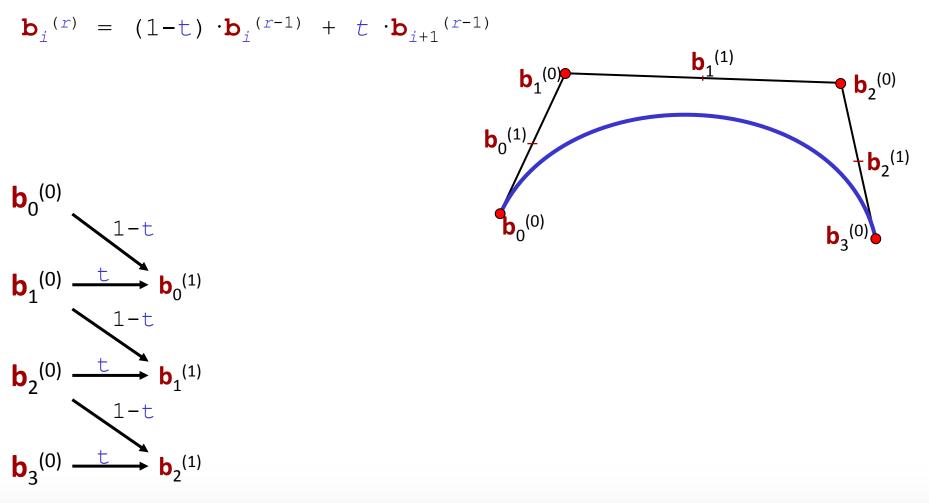
 $b_0^{(0)}$ 

 $b_1^{(0)}$ 

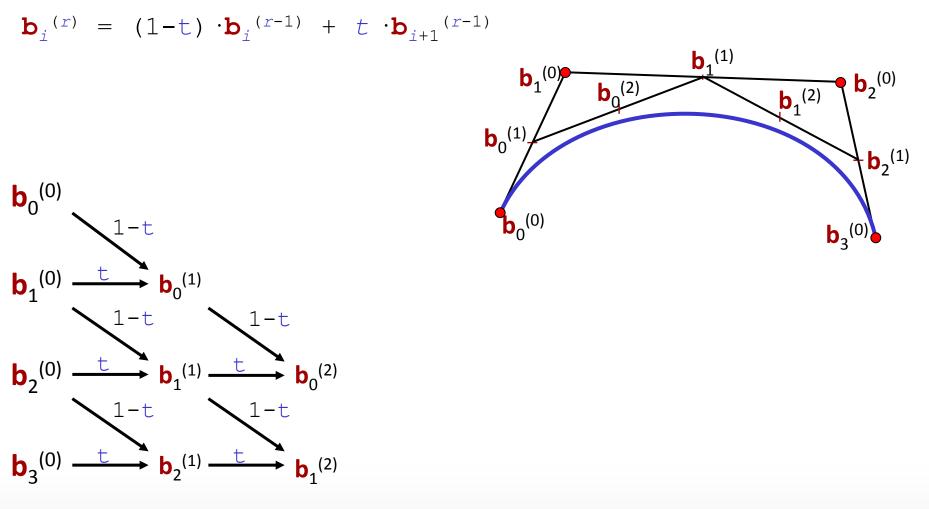
 $b_{2}^{(0)}$ 

 $b_{3}^{(0)}$ 

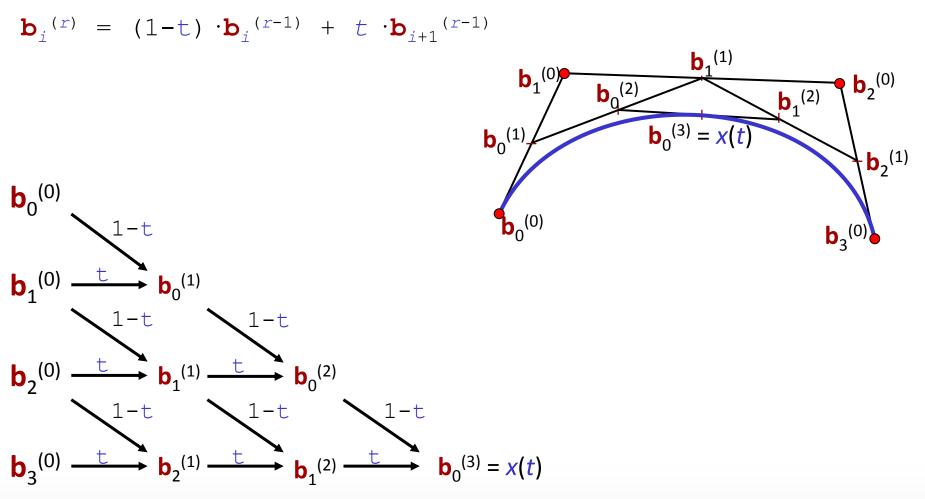
repeated convex combination of control points



repeated convex combination of control points



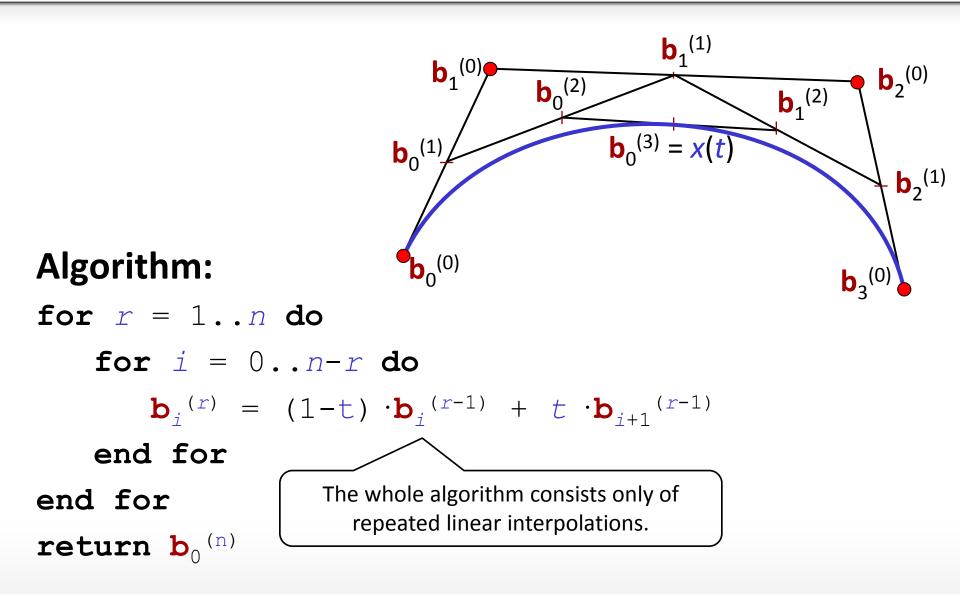
repeated convex combination of control points



de Casteljau scheme

#### The intermediate coefficients b<sub>i</sub><sup>r</sup>(t) can be written in a triangular matrix: the de Casteljau scheme:

 $b_0 = b_0^0$  $\mathbf{b}_1 = \mathbf{b}_1^0 \qquad \mathbf{b}_0^1$  $\mathbf{b}_2 = \mathbf{b}_2^0 \qquad \mathbf{b}_1^1 \qquad \mathbf{b}_0^2$  $\mathbf{b}_3 = \mathbf{b}_3^0 \quad \mathbf{b}_2^1 \quad \mathbf{b}_1^2 \quad \mathbf{b}_0^3$  $\mathbf{b}_{n-1} = \mathbf{b}_{n-1}^0 \quad \mathbf{b}_{n-2}^1 \quad \dots \quad \mathbf{b}_0^{n-1}$  $\mathbf{b}_n = \mathbf{b}_n^0$   $\mathbf{b}_{n-1}^1$  ...  $\mathbf{b}_1^{n-1}$   $\mathbf{b}_0^n = \mathbf{x}(t)$ 



The polygon consisting of the points **b**<sub>0</sub>, ..., **b**<sub>n</sub> is called Bezier polygon. The points **b**<sub>i</sub> are called Bezier points.

The curve defined by the Bezier points b<sub>0</sub>, ..., b<sub>n</sub> and the de Casteljau algorithm is called Bezier curve.

The de Casteljau algorithm is numerically stable, since only convex combinations are applied.

#### **Complexity of the de Casteljau algorithm**

- O(n<sup>2</sup>) time
- O(n) memory
- with n being the number of Bezier points

#### **Properties of Bezier curves:**

- given: Bezier points b<sub>0</sub>, ..., b<sub>n</sub>
   Bezier curve x(t)
- Bezier curve is polynomial curve of degree *n*.
- End point interpolation: x(0) = b<sub>0</sub>, x(1) = b<sub>n</sub>. The remaining Bezier points are only generally approximated.
- Convex hull property:

Bezier curve is completely inside the convex hull of its Bezier polygon.

#### Variation diminishing

no line intersects the Bezier curve more often than its Bezier polygon.

- Influence of Bezier points: global, but pseudo-local
  - global: moving a Bezier point changes the whole curve progression
  - *pseudo-local:*  $\mathbf{b}_i$  has its maximal influence on  $\mathbf{x}(t)$  at t = i / n.

#### Affine invariance:

Bezier curve and Bezier polygon are invariant under affine transformations

Invariance under affine parameter transformations

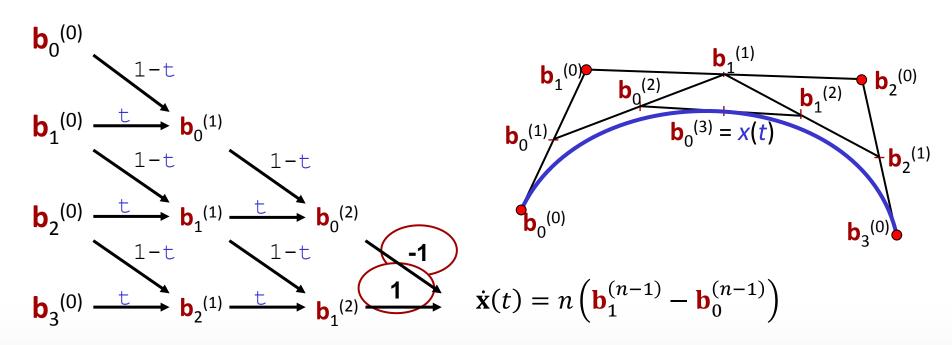
#### • Symmetry:

The following two Bezier curves coincide, they are only traversed in opposite directions:

$$\mathbf{x}(t) = [\mathbf{b}_0, \dots, \mathbf{b}_n] \qquad \mathbf{x}'(t) = [\mathbf{b}_n, \dots, \mathbf{b}_0]$$

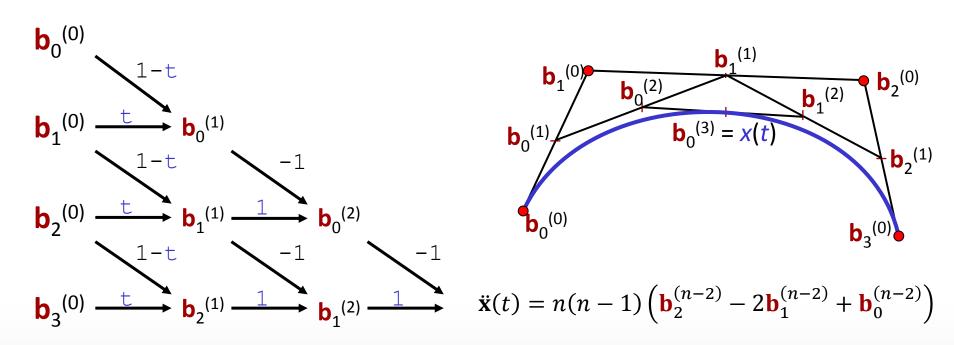
- Linear precision:
   Bezier curve is line segment, if b<sub>0</sub>,..., b<sub>n</sub> are collinear
- Invariant under barycentric combinations

- First derivative of a Bezier curve
  - Endpoints:  $\dot{\mathbf{x}}(0) = n \cdot (\mathbf{b}_1 \mathbf{b}_0)$  $\dot{\mathbf{x}}(1) = n \cdot (\mathbf{b}_n - \mathbf{b}_{n-1})$  t = 0, t = 1:



de Casteljau scheme

Second derivative of a Bezier curve



de Casteljau scheme

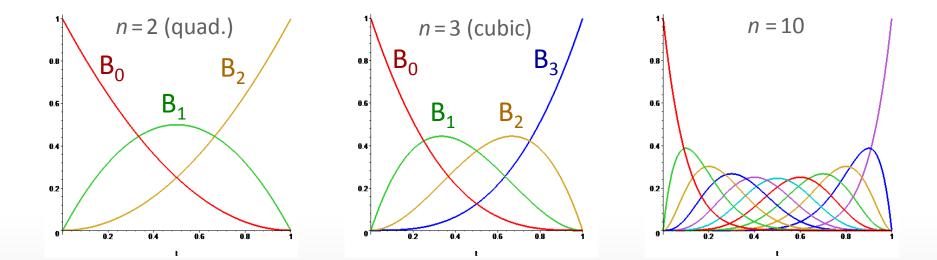
**Bezier Curves** Bernstein form

#### **Bernstein Basis**

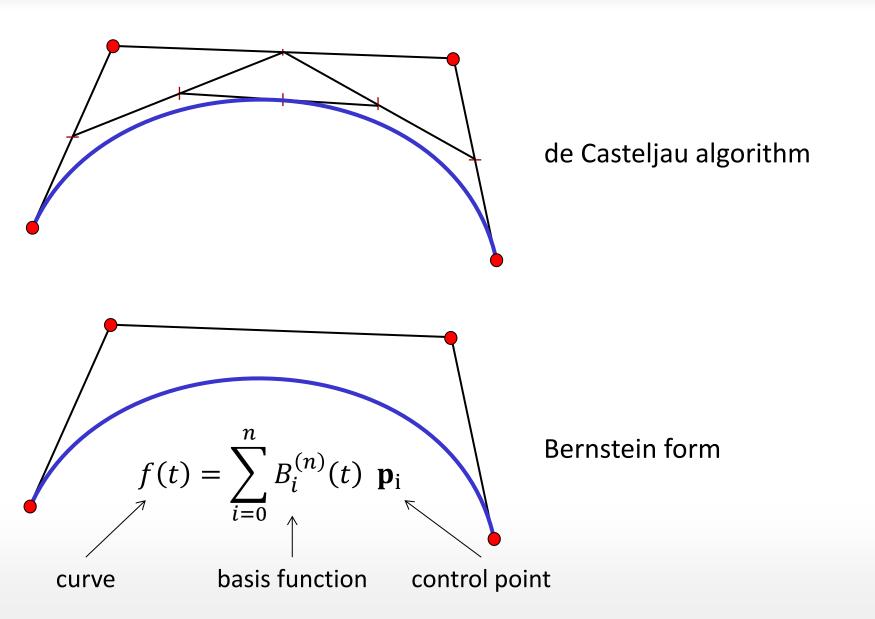
Bezier curves are algebraically defined using the Bernstein basis:

• Bernstein basis of degree *n*:

$$B = \left\{ B_0^{(n)}, B_1^{(n)}, ..., B_n^{(n)} \right\}$$
$$B_i^{(n)}(t) \coloneqq {\binom{n}{i}} t^i (1-t)^{n-i}$$



#### **Bernstein Basis**



#### **Examples**

(0)

#### The first three Bernstein bases:

$$B_{0}^{(0)} := 1$$

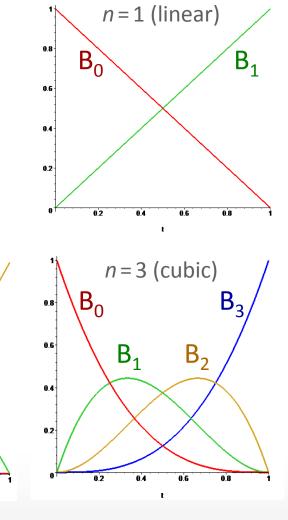
$$B_{0}^{(1)} := (1-t) \qquad B_{1}^{(1)} := t$$

$$B_{0}^{(2)} := (1-t)^{2} \qquad B_{1}^{(2)} := 2t(1-t) \qquad B_{2}^{(2)} := t^{2}$$

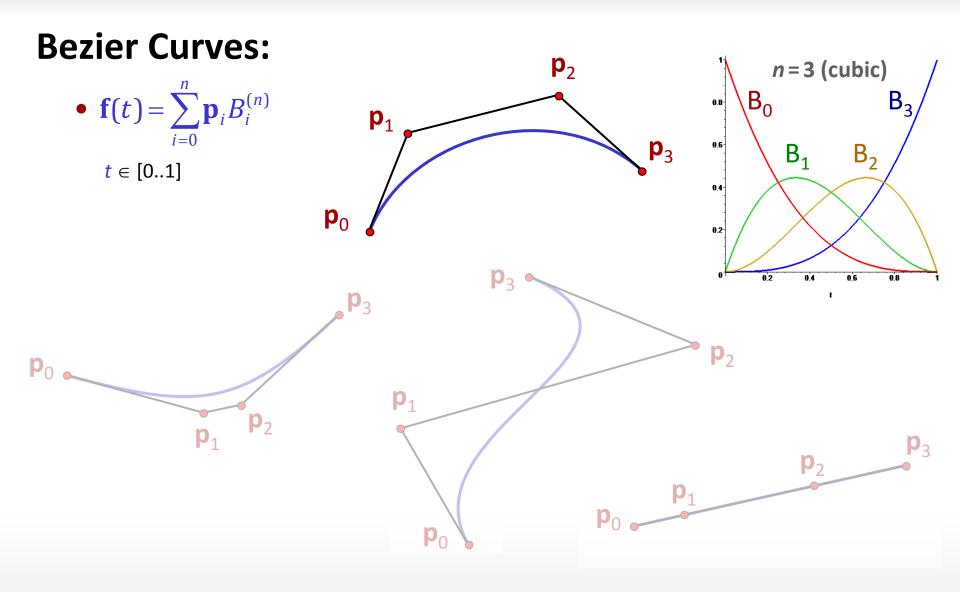
$$B_{0}^{(3)} := (1-t)^{3} \qquad B_{1}^{(3)} := 3t(1-t)^{2}$$

$$B_{2}^{(3)} := 3t^{2}(1-t) \qquad B_{3}^{(3)} := t^{3}$$

$$B_{1}^{(n)}(t) := \binom{n}{i} t^{i} (1-t)^{n-i}$$



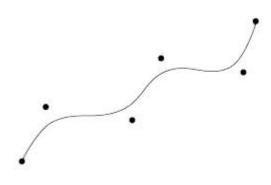
#### **Bezier Curves in Bernstein form**



### **Summary for Bezier Curves**

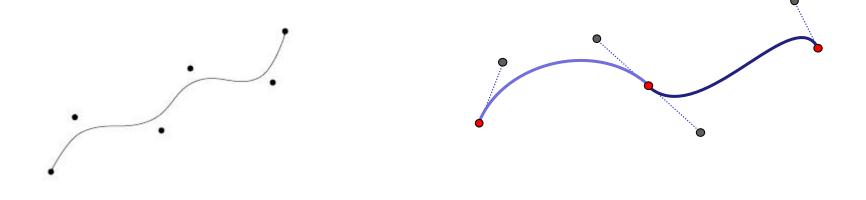
#### **Bezier curves and curve design:**

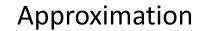
- The rough form is specified by the position of the control points
- Result: smooth curve approximating the control points
- Computation / Representation:
  - de Casteljau algorithm
  - Bernstein form



- Problems:
  - high polynomial degree
  - moving a control point can change the whole curve
  - interpolation of points
  - → Bezier splines

#### **Towards Bezier Splines**







#### Interpolation

#### **Towards Bezier Splines**

#### Interpolation problem:

• given:

$$\begin{split} \mathbf{k}_0, ..., \mathbf{k}_n \in \mathbb{R}^3 & \text{control points} \\ t_0, ..., t_n \in \mathbb{R} & \text{knot sequence} \\ t_i < t_{i+1} \text{ für } i = 0, ..., n-1 \end{split}$$

• wanted:

interpolating curve  $\mathbf{x}(t)$ , i.e.,  $\mathbf{x}(t_i) = \mathbf{k}_i$  for i = 0, ..., n

• Approach:

"Joining" of *n* Bezier curves with certain intersection conditions

### **Towards Bezier Splines**

# The following issues arise when stitching together Bezier curves:

- Continuity
- Degree
- (Parameterization)

# **Bezier Splines** Parametric and Geometric Continuity

### Continuity

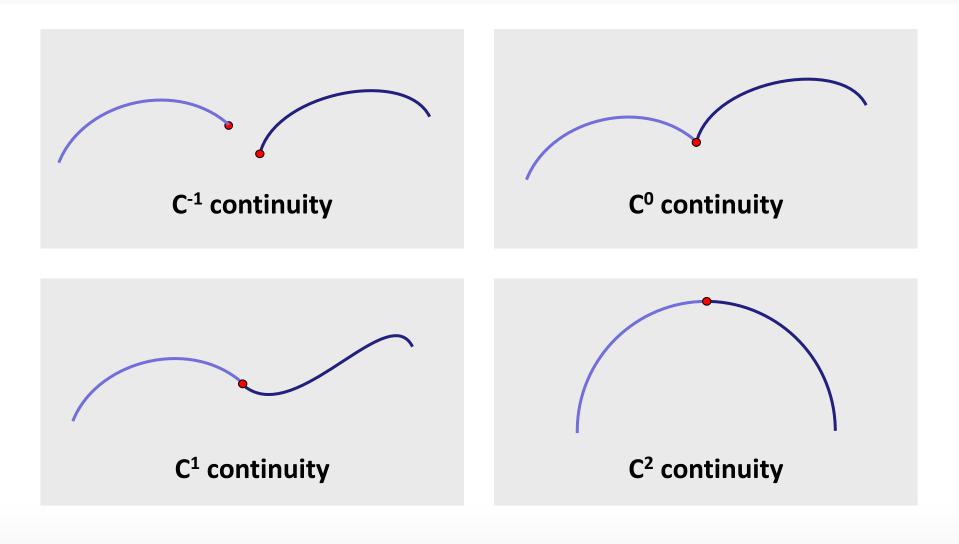
#### Joining of curves - continuity

• given: 2 curves

**x**<sub>1</sub>(*t*) over  $[t_0, t_1]$ **x**<sub>2</sub>(*t*) over  $[t_1, t_2]$ 

•  $\mathbf{x}_1$  and  $\mathbf{x}_2$  are C<sup>r</sup> continuous in  $t_1$ , if they coincide in  $\mathbf{0}^{\text{th}} - r^{\text{th}}$  derivative vector in  $t_1$ .

### Continuity



#### **Parametric Continuity** C<sup>r</sup>:

- C<sup>0</sup>, C<sup>1</sup>, C<sup>2</sup>... continuity.
- Does a particle moving on this curve have a smooth trajectory (position, velocity, acceleration,...)?
- Useful for animation (object movement, camera paths)
- Depends on parameterization

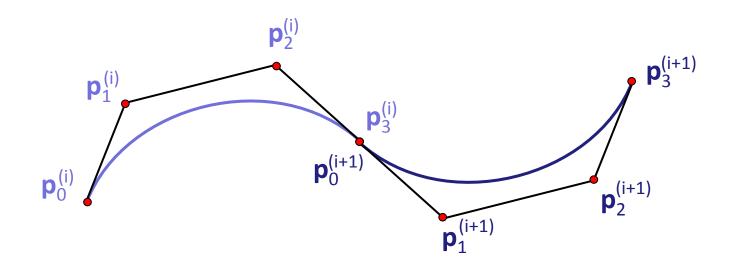
#### Geometric Continuity G<sup>r</sup>:

- Independent of parameterization
- Is the curve itself smooth?
- More relevant for modeling (curve design)

#### **Bezier Splines**

Local control: Bezier splines

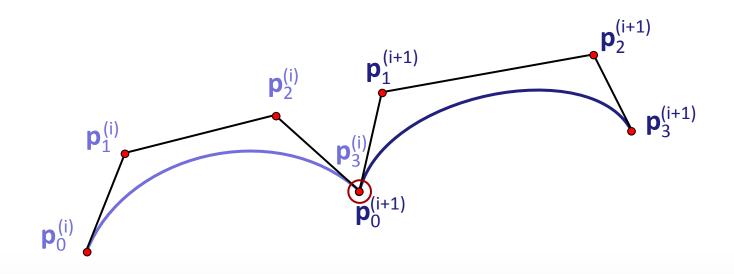
- Concatenate several curve segments
- Question: Which constraints to place upon the control points in order to get C<sup>-1</sup>, C<sup>0</sup>, C<sup>1</sup>, C<sup>2</sup> continuity?



### **Bezier Spline Continuity**

#### **Rules for Bezier spline continuity:**

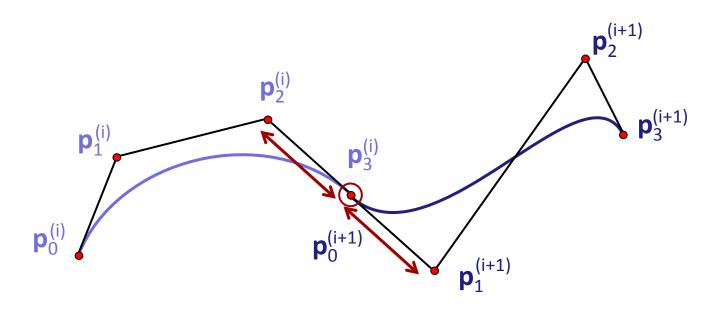
- C<sup>0</sup> continuity:
  - Each spline segment interpolates the first and last control point
  - Therefore: Points of neighboring segments have to coincide for C<sup>0</sup> continuity.



### **Bezier Spline Continuity**

#### **Rules for Bezier spline continuity:**

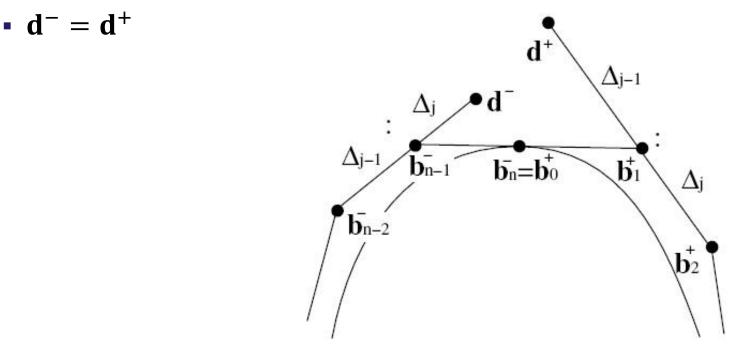
- Additional requirement for C<sup>1</sup> continuity:
  - Tangent vectors are proportional to differences p<sub>1</sub> p<sub>0</sub>, p<sub>n</sub> p<sub>n-1</sub>
  - Therefore: These vectors must be identical for C<sup>1</sup> continuity

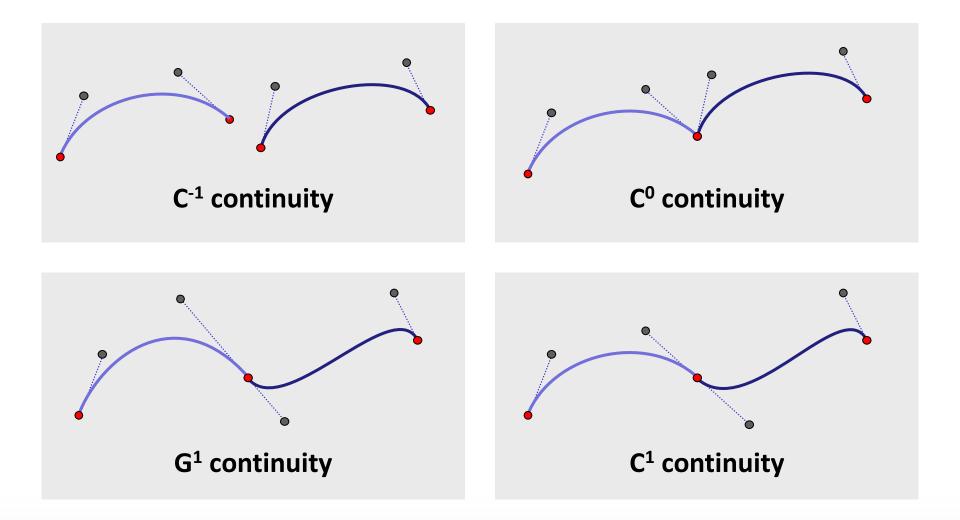


### **Bezier Spline Continuity**

#### **Rules for Bezier spline continuity:**

• Additional requirement for C<sup>2</sup> continuity:





**Bezier Splines** Choosing the degree

# **Choosing the Degree...**

#### **Candidates:**

- d = 0 (piecewise constant): not smooth
- d = 1 (piecewise linear): not smooth enough
- d = 2 (piecewise quadratic): constant 2nd derivative, still too inflexible
- d = 3 (piecewise cubic): degree of choice for computer graphics applications









## **Cubic Splines**

#### **Cubic piecewise polynomials:**

- We can attain C<sup>2</sup> continuity without fixing the second derivative throughout the curve
- C<sup>2</sup> continuity is perceptually important
  - We can see second order shading discontinuities (esp.: reflective objects)
  - Motion: continuous *position*, *velocity* & *acceleration* Discontinuous acceleration noticeable (object/camera motion)
- One more argument for cubics:
  - Among all C<sup>2</sup> curves that interpolate a set of points (and obey to the same end conditions), a piecewise cubic curve has the least integral acceleration ("smoothest curve you can get").

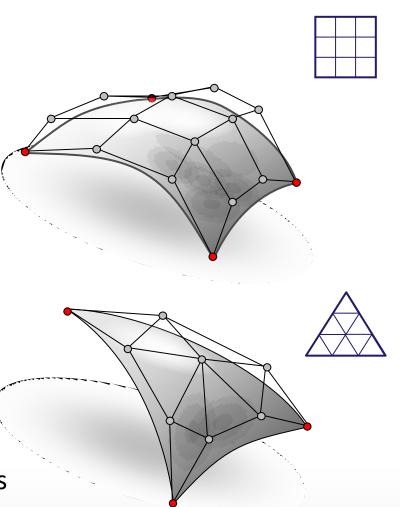
- See AdditionalMaterial/CubicsMinimizeAcceleration.pdf

# **Spline Surfaces**

## **Spline Surfaces**

#### **Two different approaches**

- Tensor product surfaces
  - Simple construction
  - Everything carries over from curve case
  - Quad patches
  - Degree anisotropy
- Total degree surfaces
  - Not as straightforward
  - Isotropic degree
  - Triangle patches
  - "Natural" generalization of curves

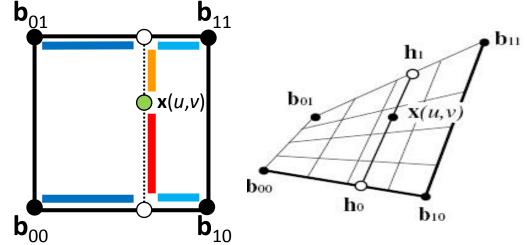


#### **Tensor Product Surfaces**

### **Tensor Product Bezier Surfaces**

Bezier curves: repeated linear interpolation

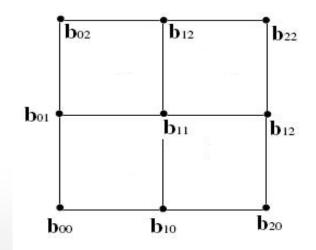
now a different setup: 4 points  $\mathbf{b}_{00}$ ,  $\mathbf{b}_{10}$ ,  $\mathbf{b}_{11}$ ,  $\mathbf{b}_{01}$ parameter area  $[0,1] \times [0,1]$ 



bilinear interpolation: repeated linear interpolation

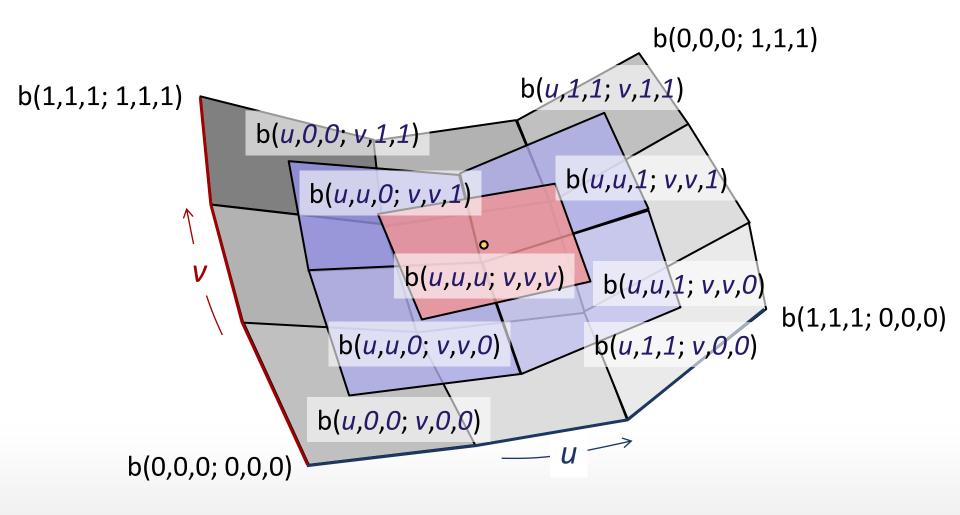
repeated bilinear interpolation:

gives us tensor product Bezier surfaces (example shows quadratic Bezier surface)



### **De Casteljau Algorithm**

De Casteljau algorithm for tensor product surfaces:

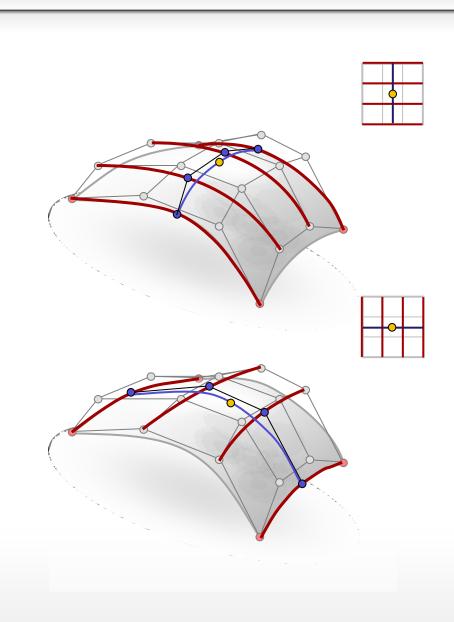


### **Tensor Product Surfaces**

#### **Tensor Product Surfaces:**

$$f(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_i(u) b_j(v) \mathbf{p}_{i,j}$$
  
=  $\sum_{i=1}^{n} b_i(u) \sum_{j=1}^{n} b_j(v) \mathbf{p}_{i,j}$   
=  $\sum_{j=1}^{n} b_j(u) \sum_{i=1}^{n} b_i(v) \mathbf{p}_{i,j}$ 

- "Curves of Curves"
- Order does not matter



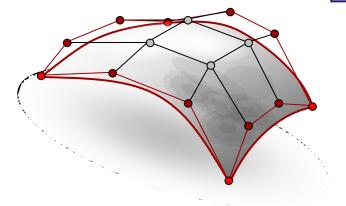
# **Tensor Product Surfaces** Bezier Patches

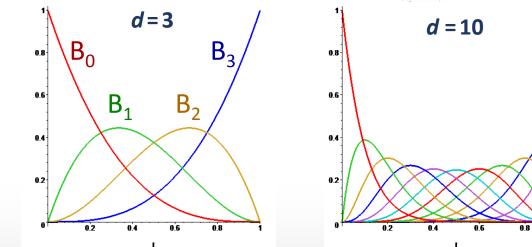
### **Bezier Patches**

#### **Bezier Patches:**

- Remember endpoint interpolation:
  - Boundary curves are Bezier curves of the boundary control points







## **Continuity Conditions**

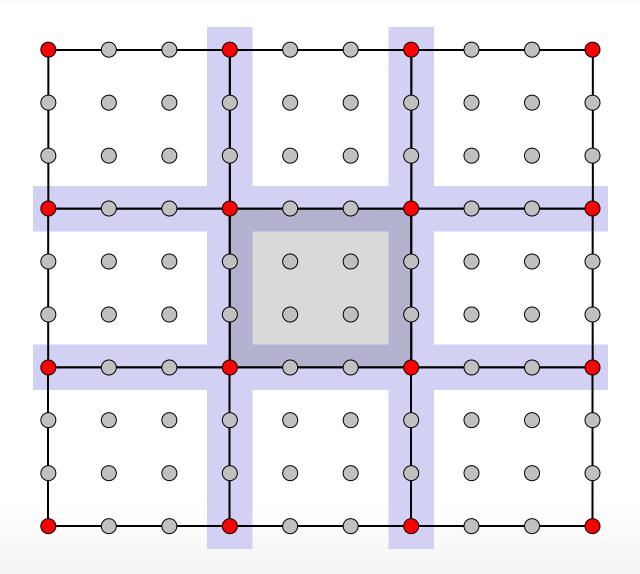
#### For C<sup>0</sup> continuity:

• Boundary control points must match

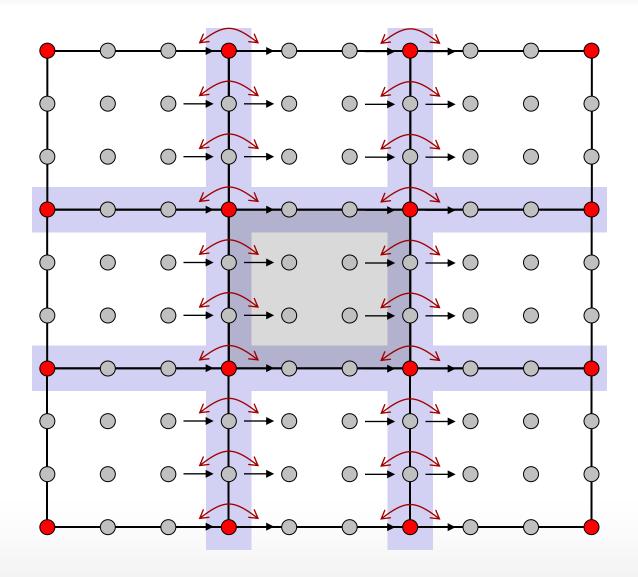
#### For C<sup>1</sup> continuity:

• Difference vectors must match at the boundary

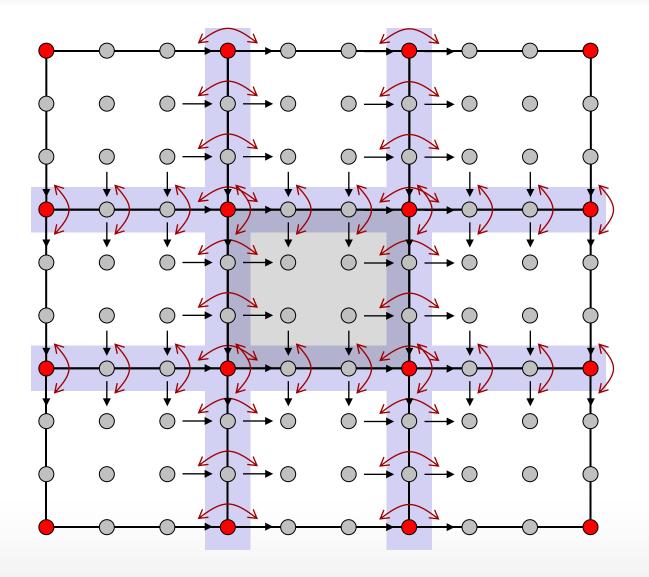
## C<sup>0</sup> Continuity



## C<sup>1</sup> Continuity



## C<sup>1</sup> Continuity

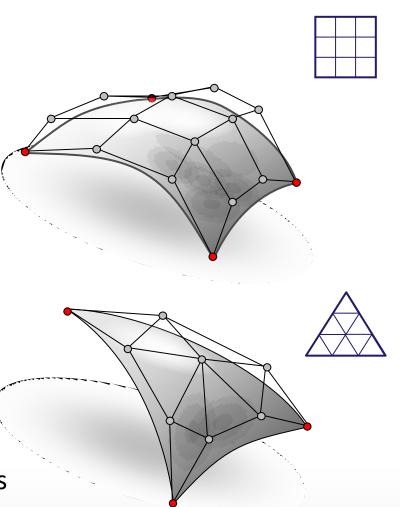


### **Total Degree Surfaces**

## **Spline Surfaces**

#### **Two different approaches**

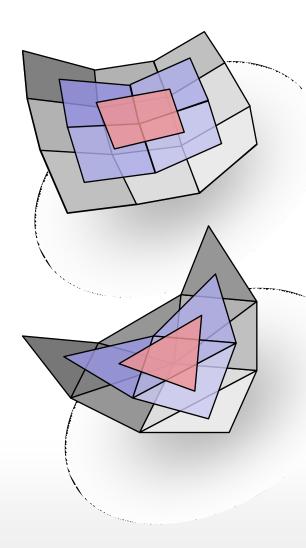
- Tensor product surfaces
  - Simple construction
  - Everything carries over from curve case
  - Quad patches
  - Degree anisotropy
- Total degree surfaces
  - Not as straightforward
  - Isotropic degree
  - Triangle patches
  - "Natural" generalization of curves



## **Bezier Triangles**

#### Alternative surface definition: Bezier triangles

- Constructed according to given total degree
  - Completely symmetric: No degree anisotropy
- Can be derived using a triangular de Casteljau algorithm
  - Barycentric interpolation



### **Barycentric Coordinates**

#### **Barycentric Coordinates:**

• Planar case:

Barycentric combinations of 3 points

 $\mathbf{p} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + \gamma \mathbf{p}_3, \text{ with } : \alpha + \beta + \gamma = 1$  $\gamma = 1 - \alpha - \beta$ 

• Area formulation:

$$\alpha = \frac{area(\Delta(\mathbf{p}_2, \mathbf{p}_3, \mathbf{p}))}{area(\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3))}, \beta = \frac{area(\Delta(\mathbf{p}_1, \mathbf{p}_3, \mathbf{p}))}{area(\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3))}, \gamma = \frac{area(\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}))}{area(\Delta(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3))}$$

 $\mathbf{p}_2$ 

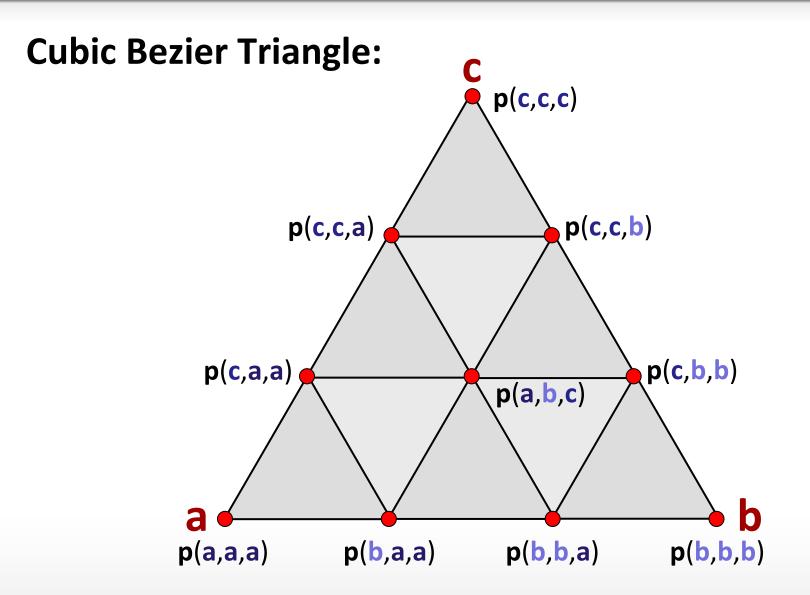
α

**p**<sub>2</sub>

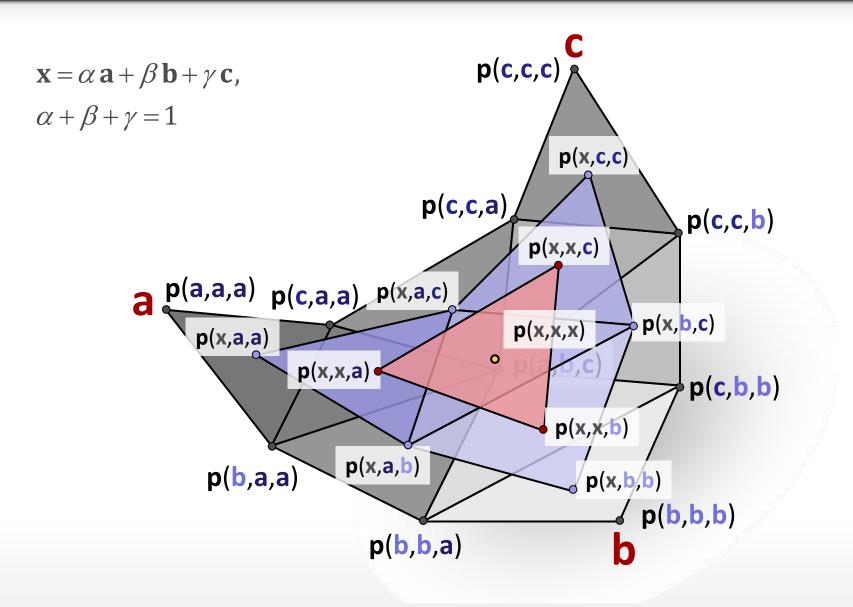
р

**p**<sub>1</sub>

#### **Example**

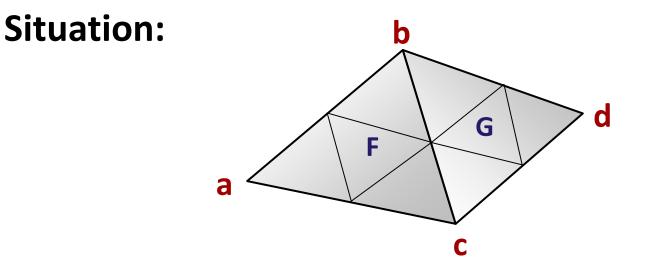


### **De Casteljau Algorithm**



#### We need to assemble Bezier triangles continuously:

- What are the conditions for C<sup>0</sup>, C<sup>1</sup> continuity?
- As an example, we will look at the quadratic case...

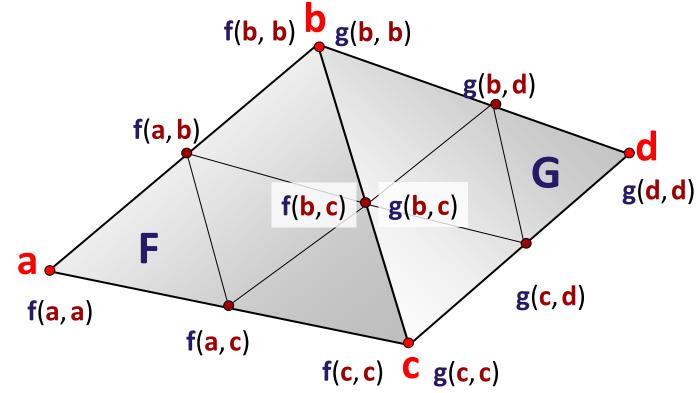


- Two Bezier triangles meet along a common edge.
  - Parametrization: T<sub>1</sub> = {a, b, c}, T<sub>2</sub> = {c, b, d}
  - Polynomial surfaces F(T<sub>1</sub>), G(T<sub>2</sub>)
  - Control points:

-  $F(T_1)$ : f(a,a), f(a,b), f(b,b), f(a,c), f(c,c), f(b,c)

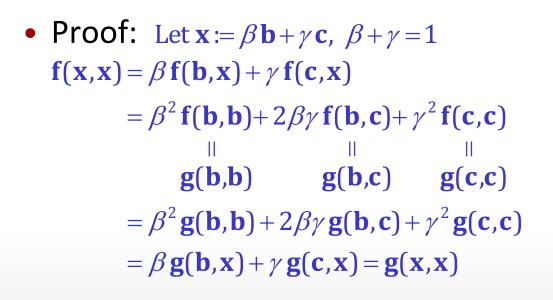
 $- \mathbf{G}(\mathsf{T}_2): \mathbf{g}(\mathbf{d}, \mathbf{d}), \mathbf{g}(\mathbf{d}, \mathbf{b}), \mathbf{g}(\mathbf{b}, \mathbf{b}), \mathbf{g}(\mathbf{d}, \mathbf{c}), \mathbf{g}(\mathbf{c}, \mathbf{c}), \mathbf{g}(\mathbf{b}, \mathbf{c})$ 

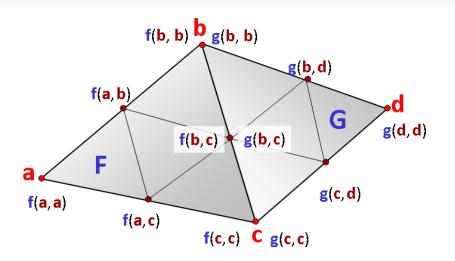
Situation:



#### C<sup>0</sup> Continuity:

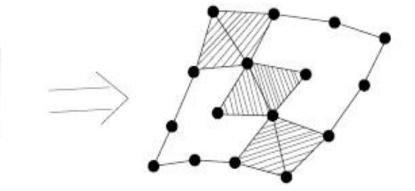
The points on the boundary have to agree:
f(b, b) = g(b, b)
f(b, c) = g(b, c)
f(c, c) = g(c, c)





#### C<sup>1</sup> Continuity:

- We need C<sup>0</sup> continuity.
- In addition:
- Points at hatched quadrilaterals are coplanar
- Hatched quadrilaterals are an affine image of the same parameter quadrilateral



## **Curves on Surfaces, trimmed NURBS**

#### Quad patch problem:

- All of our shapes are parameterized over rectangular or triangular regions
- General boundary curves are hard to create
- Topology fixed to a disc (or cylinder, torus)
- No holes in the middle
- Assembling complicated shapes is painful
  - Lots of pieces
  - Continuity conditions for assembling pieces become complicated
  - Cannot use C<sup>2</sup> B-Splines continuity along boundaries when using multiple pieces

## **Curves on Surfaces, trimmed NURBS**

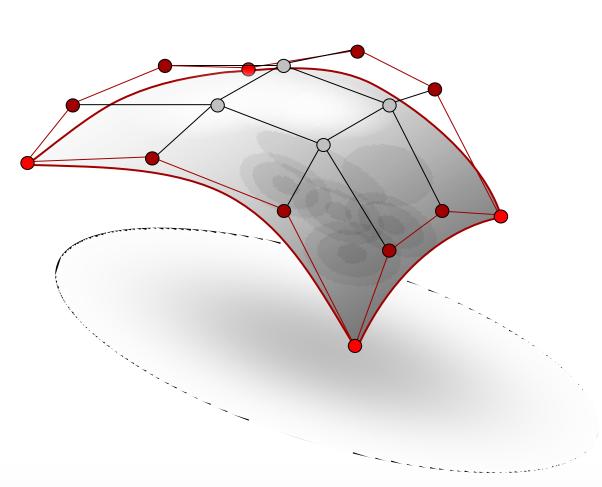
#### **Consequence:**

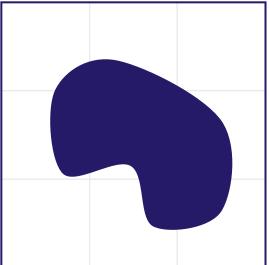
- We need more control over the parameter domain
- One solution is *trimming* using *curves on surfaces (CONS)*
- Standard tool in CAD: trimmed NURBS

#### **Basic idea:**

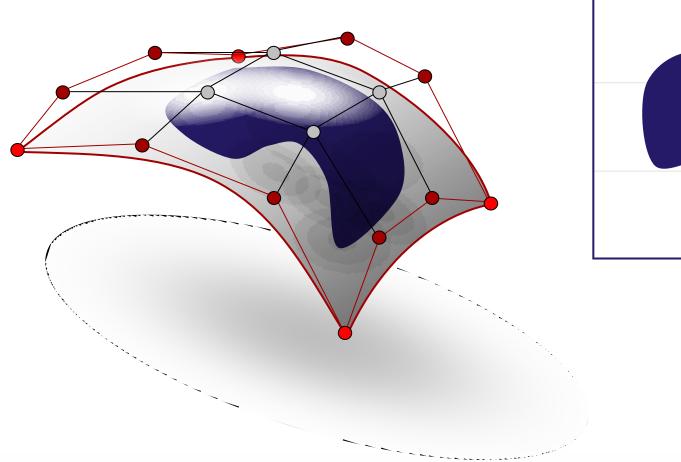
- Specify a curve in the parameter domain that encapsulates one (or more) pieces of area
- Tessellate the parameter domain accordingly to cut out the trimmed piece (rendering)

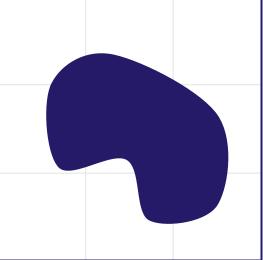
### **Curves-on-Surfaces (CONS)**



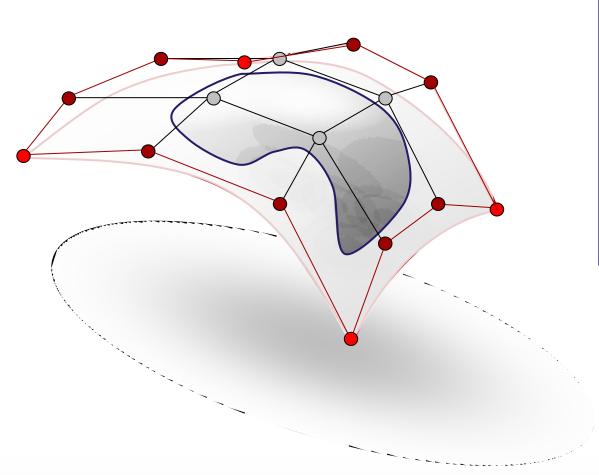


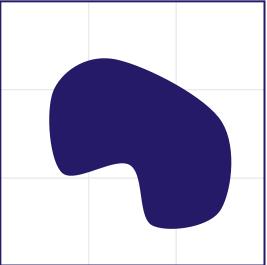
### **Curves-on-Surfaces (CONS)**





### **Curves-on-Surfaces (CONS)**





## **Summary**

- Bezier Curves
  - de Casteljau algorithm
  - Bernstein form
- Bezier Splines
- Bezier Tensor Product Surfaces
- Bezier Total Degree Surfaces