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in the VIC from 15:00-17:00 



Bezier Curves 
de Casteljau algorithm 

• Paul de Casteljau (1959) @ Citroën 
• Pierre Bezier (1963) @ Renault 

Meine Zeit bei Citroën / My time at Citroën 
see the PDF deCasteljau_de.pdf and deCasteljau_en.pdf in the download area of the webpage 



Bezier curves 

History: 

• Bezier curves/splines developed by 

 Paul de Casteljau at Citroën (1959) 

 Pierre Bézier at Renault (1963) 

 for free-form parts in automotive design 

• Today: Standard tool for 2D curve editing 

• Cubic 2D Bezier curves are everywhere: 

 Postscript, PDF, Truetype (quadratic curves), Windows GDI... 

 Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, ... 

• Widely used in 3D curve & surface modeling as well 



All You See is Bezier Curves... 



De Casteljau algorithm 

Approximation setting: 

Given: p0, …, pn 

Wanted: smooth, approximating curve 



De Casteljau algorithm 

Linear interpolation 



De Casteljau algorithm 

Parabolas 

 planar curve, even if defined in R3 

 

Example: 



De Casteljau algorithm 

Another parabola construction 

given: 3 points b0, b1, b2 

 

parabola x(t) 



De Casteljau algorithm 

Example 



De Casteljau algorithm 

De Casteljau Algorithm: Computes x (t) for given t 

• Bisect control polygon in ratio t : (1 – t) 

• Connect the new dots with lines (adjacent segments) 

• Interpolate again with the same ratio 

• Iterate, until only one point is left 



De Casteljau algorithm 

Description of the de Casteljau algorithm 

• given: points  

• wanted: curve 

 

• geometric construction of the point x(t) for given t: 

 

 

 

 

• Then,         is the searched curve point x(t) at the 
parameter value t 



De Casteljau algorithm 
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De Casteljau algorithm 
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De Casteljau algorithm 
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De Casteljau algorithm 
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De Casteljau algorithm 

The intermediate coefficients bi
r(t) can be written in 

a triangular matrix: the de Casteljau scheme: 



De Casteljau algorithm 

Algorithm: 
for r = 1..n do 

   for i = 0..n-r do 

      bi
(r) = (1-t)·bi
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The whole algorithm consists only of 
repeated linear interpolations. 



De Casteljau algorithm 

The polygon consisting of the points b0, …, bn is called 
Bezier polygon. The points bi are called Bezier points. 

The curve defined by the Bezier points b0, …, bn and the 
de Casteljau algorithm is called Bezier curve. 

The de Casteljau algorithm is numerically stable, since 
only convex combinations are applied. 

Complexity of the de Casteljau algorithm 
• O(n2) time 

• O(n) memory 

• with n being the number of Bezier points 



De Casteljau algorithm 

Properties of Bezier curves: 

• given: Bezier points b0, …, bn  

          Bezier curve x(t) 

• Bezier curve is polynomial curve of degree n. 

• End point interpolation: x(0) = b0, x(1) = bn. The 
remaining Bezier points are only generally approximated. 

• Convex hull property: 

 Bezier curve is completely inside the convex hull of its 
Bezier polygon. 



De Casteljau algorithm 

• Variation diminishing 
no line intersects the Bezier curve more often than its Bezier 
polygon. 

• Influence of Bezier points: global, but pseudo-local 

• global: moving a Bezier point changes the whole curve 
progression 

• pseudo-local: bi has its maximal influence on x(t) at t = i /n. 

• Affine invariance: 
Bezier curve and Bezier polygon are invariant under affine 
transformations 

• Invariance under affine parameter transformations 



De Casteljau algorithm 

• Symmetry: 
The following two Bezier curves coincide, they are 
only traversed in opposite directions: 

 

• Linear precision: 
Bezier curve is line segment, if b0,…, bn are 
collinear 

• Invariant under barycentric combinations  
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De Casteljau algorithm 

• First derivative of a Bezier curve 

• Endpoints:  
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De Casteljau algorithm 

• Second derivative of a Bezier curve 

b0
(0) 

b1
(0) 

b2
(0) 

b3
(0) 

b0
(1) 

b1
(1) 

b2
(1) 

b0
(2) 

b1
(2) 

b0
(3) = x(t) 

de Casteljau scheme 

b0
(0) 

b1
(0) 

b2
(0) 

b3
(0) 

b0
(1) 

b1
(1) 

b2
(1) 

1-t 

1-t 

1-t 

t 

t 

t 

b0
(2) 

b1
(2) 

-1 

1 

-1 

1 𝐱 𝑡 = 𝑛 𝑛 − 1 𝐛2
𝑛−2

− 2𝐛1
𝑛−2

+ 𝐛0
𝑛−2

 



Bezier Curves 
Bernstein form 



Bernstein Basis 

Bezier curves are algebraically defined using the 
Bernstein basis: 

• Bernstein basis of degree n:  
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Bernstein Basis 

de Casteljau algorithm 

curve basis function control point 

Bernstein form 
𝑓 𝑡 = 𝐵𝑖

𝑛
𝑡   𝐩i

𝑛

𝑖=0

 



Examples 

The first three Bernstein bases: 
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Bezier Curves in Bernstein form 

Bezier Curves: 

•   
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Summary for Bezier Curves 

Bezier curves and curve design: 
• The rough form is specified by the position of the control 

points 

• Result: smooth curve approximating the control points 

• Computation / Representation: 
 de Casteljau algorithm 

 Bernstein form 

 

• Problems: 
 high polynomial degree 

 moving a control point can change the whole curve 

 interpolation of points 

  Bezier splines 



Towards Bezier Splines 

Approximation Interpolation 



Towards Bezier Splines 

Interpolation problem: 

• given:  

     control points 

     knot sequence 

 

 

• wanted: 

 interpolating curve x(t), i.e., x(ti) = ki for i = 0, …, n 

 

• Approach: 
"Joining" of n Bezier curves with certain intersection conditions 



Towards Bezier Splines 

The following issues arise when stitching together 
Bezier curves: 

• Continuity 

• Degree 

• (Parameterization) 



Bezier Splines 
Parametric and Geometric Continuity 



Continuity 

Joining of curves - continuity 

• given: 2 curves 

  x1(t) over [t0, t1] 

  x2(t) over [t1, t2] 

 

•  x1 and x2 are Cr continuous in t1, if they coincide in  

    0th – rth derivative vector in t1. 

 



Continuity 

C-1 continuity C0 continuity 

C1 continuity C2 continuity 



Continuity 

Parametric Continuity Cr: 

• C0, C1, C2... continuity. 

• Does a particle moving on this curve have a smooth 
trajectory (position, velocity, acceleration,...)? 

• Useful for animation (object movement, camera paths) 

• Depends on parameterization 

Geometric Continuity Gr: 

• Independent of parameterization 

• Is the curve itself smooth? 

• More relevant for modeling (curve design) 



Bezier Splines 

Local control: Bezier splines 

• Concatenate several curve segments 

• Question: Which constraints to place upon the control 
points in order to get C-1, C0, C1, C2 continuity? 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

• C0 continuity: 

 Each spline segment interpolates the first and last control point 

 Therefore: Points of neighboring segments have to coincide for 
C0 continuity. 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

• Additional requirement for C1 continuity: 

 Tangent vectors are proportional to differences p1 – p0, pn – pn-1 

 Therefore: These vectors must be identical for C1 continuity 
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Bezier Spline Continuity 

Rules for Bezier spline continuity: 

• Additional requirement for C2 continuity: 

 𝐝− = 𝐝+ 



Continuity 

C-1 continuity C0 continuity 

G1 continuity C1 continuity 



Bezier Splines 
Choosing the degree 



Choosing the Degree... 

Candidates: 

• d = 0 (piecewise constant): not smooth 

• d = 1 (piecewise linear): not smooth enough 

• d = 2 (piecewise quadratic): constant 2nd 
derivative, still too inflexible 

• d = 3 (piecewise cubic): degree of choice 
for computer graphics applications 



Cubic Splines 

Cubic piecewise polynomials: 

• We can attain C2 continuity without fixing the second 
derivative throughout the curve 

• C2 continuity is perceptually important 
 We can see second order shading discontinuities  

(esp.: reflective objects) 

 Motion: continuous position, velocity & acceleration 
Discontinuous acceleration noticeable (object/camera motion) 

• One more argument for cubics: 
 Among all C2 curves that interpolate a set of points (and obey to 

the same end conditions), a piecewise cubic curve has the least 
integral acceleration (“smoothest curve you can get”). 

– see AdditionalMaterial/CubicsMinimizeAcceleration.pdf 



Spline Surfaces 



Spline Surfaces 

Two different approaches 

• Tensor product surfaces 

 Simple construction 

 Everything carries over 
from curve case 

 Quad patches 

 Degree anisotropy 

• Total degree surfaces 

 Not as straightforward 

 Isotropic degree 

 Triangle patches 

 “Natural” generalization of curves 



Tensor Product Surfaces 



Tensor Product Bezier Surfaces 

Bezier curves: 
repeated linear interpolation 

bilinear interpolation: 
repeated linear interpolation 

repeated bilinear interpolation: 
gives us tensor product Bezier surfaces 
(example shows quadratic Bezier surface) 

now a different setup: 
4 points b00, b10, b11, b01 

parameter area [0,1]  [0,1] 
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De Casteljau Algorithm 

De Casteljau algorithm for tensor product surfaces: 

v 
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Tensor Product Surfaces 

Tensor Product Surfaces: 

 

 

 

• “Curves of Curves” 

• Order does not matter 
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Tensor Product Surfaces 
Bezier Patches 



Bezier Patches 

Bezier Patches: 

• Remember endpoint interpolation: 

 Boundary curves are Bezier 
curves of the boundary 
control points 

d = 10 d = 3 
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Continuity Conditions 

For C0 continuity: 

• Boundary control points must match 

For C1 continuity: 

• Difference vectors must match at the boundary 



C0 Continuity 



C1 Continuity 



C1 Continuity 



Total Degree Surfaces 



Spline Surfaces 

Two different approaches 

• Tensor product surfaces 

 Simple construction 

 Everything carries over 
from curve case 

 Quad patches 

 Degree anisotropy 

• Total degree surfaces 

 Not as straightforward 

 Isotropic degree 

 Triangle patches 

 “Natural” generalization of curves 



Bezier Triangles 

Alternative surface definition: Bezier triangles 

• Constructed according to given 
total degree 

 Completely symmetric: 
No degree anisotropy 

• Can be derived using a triangular 
de Casteljau algorithm 

 Barycentric interpolation 



Barycentric Coordinates 

Barycentric Coordinates: 

• Planar case: 
Barycentric combinations of 3 points 

 
 

• Area formulation: 
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Example 

Cubic Bezier Triangle: c 
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De Casteljau Algorithm 
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Continuity 

We need to assemble Bezier triangles continuously: 

• What are the conditions for C0, C1 continuity? 

• As an example, we will look at the quadratic case... 



Continuity 

Situation: 

 

 

• Two Bezier triangles meet along a common edge. 

 Parametrization: T1 = {a, b, c}, T2 = {c, b, d} 

 Polynomial surfaces F(T1), G(T2) 

 Control points: 

– F(T1):  f(a, a),  f(a, b), f(b, b),  f(a, c),  f(c, c), f(b, c) 

– G(T2): g(d, d), g(d, b), g(b, b), g(d, c), g(c, c), g(b, c) 
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Continuity 

Situation: 
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Continuity 

C0 Continuity: 

• The points on the boundary 
have to agree: 
f(b, b) = g(b, b) 
f(b, c) = g(b, c) 
f(c, c) = g(c, c) 

• Proof: 1,: Let   cbx
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Continuity 

C1 Continuity: 

• We need C0 continuity. 

In addition: 

• Points at hatched 
quadrilaterals are coplanar 

• Hatched quadrilaterals are 
an affine image of the same 
parameter quadrilateral 

 



Curves on Surfaces, trimmed NURBS 

Quad patch problem: 

• All of our shapes are parameterized over rectangular or 
triangular regions 

• General boundary curves are hard to create 

• Topology fixed to a disc (or cylinder, torus) 

• No holes in the middle 

• Assembling complicated shapes is painful 

 Lots of pieces 

 Continuity conditions for assembling pieces become complicated 

 Cannot use C2 B-Splines continuity along boundaries when using 
multiple pieces 



Curves on Surfaces, trimmed NURBS 

Consequence: 

• We need more control over the parameter domain 

• One solution is trimming using curves on surfaces (CONS) 

• Standard tool in CAD: trimmed NURBS 

Basic idea: 

• Specify a curve in the parameter domain that 
encapsulates one (or more) pieces of area 

• Tessellate the parameter domain accordingly to cut out 
the trimmed piece (rendering) 



Curves-on-Surfaces (CONS) 



Curves-on-Surfaces (CONS) 



Curves-on-Surfaces (CONS) 



Summary 

• Bezier Curves 

• de Casteljau algorithm 

• Bernstein form 

• Bezier Splines 

• Bezier Tensor Product Surfaces 

• Bezier Total Degree Surfaces 


