Computer Graphics and Interaction
DH2323 / Spring 2015 / P4

Bezier Curves, Splines and Surfaces

de Casteljau Algorithm - Bernstein Form

Bezier Splines
Tensor Product Surfaces - Total Degree Surfaces

Prof. Dr. Tino Weinkauf

Lab assighment

Lab help session
this Friday, May 8t

in the VIC from 15:00-17:00

Bezier Curves
de Casteljau algorithm

* Paul de Casteljau (1959) @ Citroén
* Pierre Bezier (1963) @ Renault

Meine Zeit bei Citroén / My time at Citroén
see the PDF deCasteljau_de.pdf and deCasteljau_en.pdf in the download area of the webpage

Bezier curves

History:
e Bezier curves/splines developed by

= Paul de Casteljau at Citroén (1959)
= Pierre Bézier at Renault (1963)

for free-form parts in automotive design
e Today: Standard tool for 2D curve editing

e Cubic 2D Bezier curves are everywhere:
= Postscript, PDF, Truetype (quadratic curves), Windows GDI...
= Inkscape, Corel Draw, Adobe lllustrator, Powerpoint, ...

e Widely used in 3D curve & surface modeling as well

All You See is Bezier Curves...

History:
» Bezier splines developed
= by Paul de Casteljau at Citroé

- Mawwma BLalaw adk Dawasla F4 AL

&ener

De Casteljau algorithm

Approximation setting:

Given: p, ..., P,

Wanted: smooth, approximating curve

De Casteljau algorithm

Linear interpolation

./."’

Po

x(t)=(1—1%)-po+1t-p1

De Casteljau algorithm

Parabolas N ;
X()=po+t-p1+17-p2

=» planar curve, even if defined in R3

Example: 0 2 —2
po=|1] . p1=1|0]| . pa=1| 1
0 0 0
A
e 1 >
P2 po

P!

De Casteljau algorithm

Another parabola construction

given: 3 points b, b,, b,

l,)[lJ
b f

(1—1t)-bg+1t-by
(1—t)-by+1t-bo

bf=(1—t)-bj+1t-b}
b parabola x(t)

x(t) = (1— f:)‘“) bg4+2-t-(1—1t)-by+ (2. bo

De Casteljau algorithm

Example

0 1
byg=|1 , by=1|1| , by=
0 ()

De Casteljau algorithm

De Casteljau Algorithm: Computes x(t) for given t
e Bisect control polygon in ratio t: (1 — t)
e Connect the new dots with lines (adjacent segments)
e Interpolate again with the same ratio
e |terate, until only one point is left

De Casteljau algorithm

Description of the de Casteljau algorithm
e given: points bg, by,,bp € R*
e wanted: curve x(t), t<[0.1]

e geometric construction of the point x(t) for given t:
l)‘;)(z‘) = b; firi=0,...n

bi(t)= (1L—1) <bE () 4 % sz()
huz—l....n : §.=0,...n—rT.

e Then, bj}(t)is the searched curve point x(t) at the
parameter value t

De Casteljau algorithm

repeated convex combination of control points
b, = (1-t) ‘b, + t ‘b, (=D

1 1

b,©
b..(0)
0 O(0)
b,
b,

b,©

b,

De Casteljau algorithm

repeated convex combination of control points
b, = (1-t) ‘b, + t ‘b, (=D

1 1

b,©

b,V

b,©

b,(0 —— b,
1-t

b,© —— p,®
1-t

b,) —~— b,®

De Casteljau algorithm

repeated convex combination of control points
b, = (1-t) ‘b, + t ‘b, (=D

1 1

b,©
1-t

b,(0 —— b,

1-t 1-t
b,© —— p, L p @
1-t 1-t

b, —— b,) —— | 2

De Casteljau algorithm

repeated convex combination of control points
b, = (1-t) ‘b, + t ‘b, (=D

1 1

b,©
1-t

T
1-t 1-t

b,© —— p, L p @

b,© —— p,V —L— b, —— b3 =x(t)

de Casteljau scheme

De Casteljau algorithm

The intermediate coefficients b."(t) can be written in
a triangular matrix: the de Casteljau scheme:

0
l)(») — l,)()
0 1
l)l = bl b()
bo=b} bl b}
bs=bi bl bi by
, 0) n—1

by =Db, bl . .. bF !l bi=x()

De Casteljau algorithm

b, b, 0
0

b,V

Algorithm:
for r = 1..n do
for 1 = 0..n-r do
bi(r) = (1-t) .bi(r—l) + ot 'bi+1(r_l)
end for

end for The whole algorithm consists only of
repeated linear interpolations.

return b,

De Casteljau algorithm

The polygon consisting of the points b, ..., b, is called
Bezier polygon. The points b, are called Bezier points.

The curve defined by the Bezier points b, ..., b, and the
de Casteljau algorithm is called Bezier curve.

The de Casteljau algorithm is numerically stable, since
only convex combinations are applied.

Complexity of the de Casteljau algorithm
e O(n?) time
e O(n) memory
e with n being the number of Bezier points

De Casteljau algorithm

Properties of Bezier curves:
e given: Bezier points b, ..., b,
Bezier curve X({)
e Bezier curve is polynomial curve of degree n.

 End point interpolation: X(0) = by, X(1) = b,. The
remaining Bezier points are only generally approximated.

e Convex hull property:

Bezier curve is completely inside the convex hull of its
Bezier polygon.

De Casteljau algorithm

* Variation diminishing
no line intersects the Bezier curve more often than its Bezier
polygon.

* Influence of Bezier points: global, but pseudo-local

e global: moving a Bezier point changes the whole curve
progression

» pseudo-local: b; has its maximal influence on X(t) att =1 /n.

* Affine invariance:
Bezier curve and Bezier polygon are invariant under affine
transformations

* Invariance under affine parameter transformations

De Casteljau algorithm

Symmetry:
The following two Bezier curves coincide, they are
only traversed in opposite directions:

x(t) = [bo,..., by X (t) = [by,...,bo]

Linear precision:
Bezier curve is line segment, if b,..., b, are
collinear

Invariant under barycentric combinations

De Casteljau algorithm

* First derivative of a Bezier curve

* Endpoints: x(0) = n-(by —by)

(0)
i b,
~ b,
T
bl(O) ——— b,V o
1_t 1_t bz(l)
b,(© - Lt p0—L b, o

0
: _ (n—-1) (n-1)
b3(°) Lt 5 b, Lt o b, @ x(t) =n (bln — by’)

de Casteljau scheme

De Casteljau algorithm

 Second derivative of a Bezier curve

b,©

1-t

b,(0 —— b,
1-t -1

b (O)—>b(1)_>b(2)

b0 —E = b L %) = n(n— 1) (b5 — 26" + b))

de Casteljau scheme

Bezier Curves
Bernstein form

Bernstein Basis

Bezier curves are algebraically defined using the
Bernstein basis:

e Bernstein basis of degreen: B= {Bé"),3§")»---: BIS")}

BM(t):= (r_l]ti (1 — t)n_i
I

n=2 (quad.) ' n=3 (cubic) ' n=10

Bernstein Basis

m de Casteljau algorithm

n

Bernstein form
z B(n)(t) o}

/ N

curve basis function control point

\h
II

Examples

The first three Bernstein bases:

n=1 (linear)
B)” =1
. By B,
B = (1 — t) B =g
B®=(1-tf B®=2t(1-t) BP:=t?
B®.=(1-tf B®:=3t(1-t)
: () ! () n=2 (quad.) ' n=3 (cubic)
353) = 3t° (1 — t) B§3) =3 " \Bg B, \Bg B,
B, B, B,
n j n—i
B™M(t) :=[_jt’ (1-t)
I

Bezier Curves in Bernstein form

Bezier Curves:

° f(t)zzplBl(n) P,
i=0

t € [0..1]

P>

Po

Ps

08 B O

By

B,

n =3 (cubic)
7

Summary for Bezier Curves

Bezier curves and curve design:

e The rough form is specified by the position of the control
points

e Result: smooth curve approximating the control points

e Computation / Representation:
= de Casteljau algorithm
= Bernstein form

e Problems:
= high polynomial degree
= moving a control point can change the whole curve
= interpolation of points
= — Bezier splines

Towards Bezier Splines

Approximation EEE—— Interpolation

Towards Bezier Splines

Interpolation problem:

e given:
k() kn - IR)) control pOlntS
tg,....tn € IR knot sequence
by < tijgq fire=0,..,7n —1

e wanted:

interpolating curve X(t), i.e., X(t) = k; fori=0, ..., n

e Approach:
"Joining" of n Bezier curves with certain intersection conditions

Towards Bezier Splines

The following issues arise when stitching together
Bezier curves:

Continuity

Degree

(Parameterization)

Bezier Splines
Parametric and Geometric Continuity

Continuity

Joining of curves - continuity
e given: 2 curves
X,(t) over [t,, t;]
X,(t) over [ty, 1]

e X;and X, are C" continuous in t;, if they coincide in
Oth — rth derivative vector in t;.

Continuity

R

C! continuity CO continuity

T

C! continuity C? continuity

Continuity

Parametric Continuity C":
o CO C!, C2... continuity.

e Does a particle moving on this curve have a smooth
trajectory (position, velocity, acceleration,...)?

e Useful for animation (object movement, camera paths)
e Depends on parameterization

Geometric Continuity G":
e Independent of parameterization
e |sthe curve itself smooth?
e More relevant for modeling (curve design)

Bezier Splines

Local control: Bezier splines
e Concatenate several curve segments

e Question: Which constraints to place upon the control
points in order to get C1, C°, C%, C? continuity?

Bezier Spline Continuity

Rules for Bezier spline continuity:
e COcontinuity:

= Each spline segment interpolates the first and last control point

= Therefore: Points of neighboring segments have to coincide for
CY continuity.

Bezier Spline Continuity

Rules for Bezier spline continuity:

e Additional requirement for C! continuity:
= Tangent vectors are proportional to differences p; —py, P, — P, 1
= Therefore: These vectors must be identical for C! continuity

Bezier Spline Continuity

Rules for Bezier spline continuity:

e Additional requirement for C? continuity:
s d”=d*

Continuity

G! continuity C! continuity

Bezier Splines
Choosing the degree

Choosing the Degree...

Candidates:

e d =0 (piecewise constant): not smooth

e d =1 (piecewise linear): not smooth enough

e d =2 (piecewise quadratic): constant 2nd
derivative, still too inflexible

e d =3 (piecewise cubic): degree of choice
for computer graphics applications

s FFFE

Cubic Splines

Cubic piecewise polynomials:

e We can attain C? continuity without fixing the second
derivative throughout the curve

e C? continuity is perceptually important

= We can see second order shading discontinuities
(esp.: reflective objects)

= Motion: continuous position, velocity & acceleration
Discontinuous acceleration noticeable (object/camera motion)

e One more argument for cubics:

= Among all C? curves that interpolate a set of points (and obey to
the same end conditions), a piecewise cubic curve has the least
integral acceleration (“smoothest curve you can get”).

— S€e€ AdditionalMaterial/CubicsMinimizeAcceleration.pdf

Spline Surfaces

Spline Surfaces

Two different approaches

e Tensor product surfaces

= Simple construction

= Everything carries over
from curve case

= Quad patches
= Degree anisotropy

e Total degree surfaces

= Not as straightforward
= |sotropic degree

= Triangle patches

III

= “Natural” generalization of curves

Tensor Product Surfaces

Tensor Product Bezier Surfaces

Bezier curves: b b
_ . . . 01 11
repeated linear interpolation @ 0o—9

now a different setup: O x(u,v)
4 points by, by, b1y, by,
parameter area [0,1] x [0,1]
. : : b b
bilinear interpolation: o0 10
repeated linear interpolation
.l)o 'I)l_’- ’b

repeated bilinear interpolation: X
o1 ¢ - ®
> gives us tensor product Bezier surfaces b biz
(example shows quadratic Bezier surface)

boo bio b2o

De Casteljau Algorithm

De Casteljau algorithm for tensor product surfaces:

b(0,0,0; 1,1,1)
N\
b(u,4,1; v,1,1)

b(U,0,0;v, 1,7) i/\ A\

b, 4,0; Vvl)/b(uul v,v,1)

b(u,u,u; \ml v,v,0)

/ b(1,1,1; 0,0,0)

w b(u, 1 1; v,0,0)
b(u,0,0; v,O,O))/
_——7

b(0,0,0; 0,0,0) = =

b(1,1,1;1,1,1)

Tensor Product Surfaces

Tensor Product Surfaces:

o

f(u,v)= Z Z b;(u)b;(v)p;,;

i=1 j=1

= Zbi(u)z bj(v)pi,j
i=1 j=1

= ij(u)z b, (V)pi,j
j=1 i=1

e “Curves of Curves”
e Order does not matter

Tensor Product Surfaces
Bezier Patches

Bezier Patches

Bezier Patches:

e Remember endpoint interpolation:

= Boundary curves are Bezier
curves of the boundary
control points

d=3 1 d=10

Continuity Conditions

For C° continuity:

e Boundary control points must match

For C! continuity:

e Difference vectors must match at the boundary

inuity

C% Cont

@)

@)

@)

@)

O

@)

@)

@)

@)

@)

@)

@)

inuity

C! Cont

@)

@)

@)

@)

O

@)

@)

@)

@)

@)

@)

@)

C! Continuity

@ O
O O
O @
A
Z

@

@
N4
v 7
O @
O O

Total Degree Surfaces

Spline Surfaces

Two different approaches

e Tensor product surfaces

= Simple construction

= Everything carries over
from curve case

= Quad patches
= Degree anisotropy

e Total degree surfaces

= Not as straightforward
= |sotropic degree

= Triangle patches

III

= “Natural” generalization of curves

Bezier Triangles

Alternative surface definition: Bezier triangles

e Constructed according to given
total degree

= Completely symmetric:
No degree anisotropy

e Can be derived using a triangular
de Casteljau algorithm

= Barycentric interpolation

Barycentric Coordinates

Barycentric Coordinates: P,

e Planar case:
Barycentric combinations of 3 points

P=ap,+ P, +y7Ps,With o+ f+y =1
7/21—05—,3 pl

e Area formulation:

o = 2reAAR,P3P)) 5 area(A(Py,PsP)) | area(A(p;,Py,p))
area(A(py,p,:Ps)) © area(A(p.,p,,ps)) T area(A(p;,p,ps))

Ps3

Example

Cubic Bezier Triangle:

p(a,a,a) p(b,a,a) p(b,b,a) p(b,b,b)

De Casteljau Algorithm

x=qaa+fb+yc, p(c,c,c)

a+pf+y=1

Continuity

We need to assemble Bezier triangles continuously:
e What are the conditions for C°, C! continuity?
e As an example, we will look at the quadratic case...

Continuity

Situation: b

C
e Two Bezier triangles meet along a common edge.

= Parametrization: T,={a, b, ¢}, T, ={c, b, d}

= Polynomial surfaces F(T,), G(T,)

= Control points:
— F(T,): f(a,a), f(a,b), f(b,b), f(a,c), f(c,c), f(b,c)
- G(T,): g(d, d), g(d, b), g(b, b), g(d, c), g(c,c), g(b,c)

Continuity

Situation:

f(b, b) b g(b, b)

f(c,c) C g(c,c)

Continuity

f(b, b) b g(b, b)

C° Continuity:

e The points on the boundary
have to agree:
f(b,b) = g(b, b)
f(b,c) =g(b,c) o e
f(c,c) =g(c,c) o

e Proof: Letx:=pb+yc, f+y=1
f(x,x)=pf(b,x)+yf(c,x)

= B2 f(b,b)+ 28y f(b,c)+ y*f(c,c)
1 1 1
g(b,b) g(bc) glce)

=" g(b,b)+25yg(b,c)+"g(c,c)
= pg(b,x)+yg(c,x)=g(x,x)

Continuity

C! Continuity:
e We need C° continuity.
In addition:

e Points at hatched
qguadrilaterals are coplanar

e Hatched quadrilaterals are
an affine image of the same
parameter quadrilateral

Curves on Surfaces, trimmed NURBS

Quad patch problem:

e All of our shapes are parameterized over rectangular or
triangular regions

e General boundary curves are hard to create
e Topology fixed to a disc (or cylinder, torus)
e No holes in the middle

e Assembling complicated shapes is painful
= Lots of pieces
= Continuity conditions for assembling pieces become complicated

= Cannot use C? B-Splines continuity along boundaries when using
multiple pieces

Curves on Surfaces, trimmed NURBS

Consequence:
e We need more control over the parameter domain

e One solution is trimming using curves on surfaces (CONS)
e Standard tool in CAD: trimmed NURBS

Basic idea:

e Specify a curve in the parameter domain that
encapsulates one (or more) pieces of area

e Tessellate the parameter domain accordingly to cut out
the trimmed piece (rendering)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

Summary

Bezier Curves
« de Casteljau algorithm
e Bernstein form

Bezier Splines
Bezier Tensor Product Surfaces

Bezier Total Degree Surfaces

