
Computer Graphics and Interaction
DH2323 / Spring 2015 / P4

Bezier Curves, Splines and Surfaces
de Casteljau Algorithm· Bernstein Form

Bezier Splines
Tensor Product Surfaces· Total Degree Surfaces

Prof. Dr. Tino Weinkauf

Lab assignment

Lab help session

this Friday, May 8th

in the VIC from 15:00-17:00

Bezier Curves
de Casteljau algorithm

• Paul de Casteljau (1959) @ Citroën
• Pierre Bezier (1963) @ Renault

Meine Zeit bei Citroën / My time at Citroën
see the PDF deCasteljau_de.pdf and deCasteljau_en.pdf in the download area of the webpage

Bezier curves

History:

• Bezier curves/splines developed by

 Paul de Casteljau at Citroën (1959)

 Pierre Bézier at Renault (1963)

 for free-form parts in automotive design

• Today: Standard tool for 2D curve editing

• Cubic 2D Bezier curves are everywhere:

 Postscript, PDF, Truetype (quadratic curves), Windows GDI...

 Inkscape, Corel Draw, Adobe Illustrator, Powerpoint, ...

• Widely used in 3D curve & surface modeling as well

All You See is Bezier Curves...

De Casteljau algorithm

Approximation setting:

Given: p0, …, pn

Wanted: smooth, approximating curve

De Casteljau algorithm

Linear interpolation

De Casteljau algorithm

Parabolas

 planar curve, even if defined in R3

Example:

De Casteljau algorithm

Another parabola construction

given: 3 points b0, b1, b2

parabola x(t)

De Casteljau algorithm

Example

De Casteljau algorithm

De Casteljau Algorithm: Computes x (t) for given t

• Bisect control polygon in ratio t : (1 – t)

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one point is left

De Casteljau algorithm

Description of the de Casteljau algorithm

• given: points

• wanted: curve

• geometric construction of the point x(t) for given t:

• Then, is the searched curve point x(t) at the
parameter value t

De Casteljau algorithm

bi
(r) = (1-t)·bi

(r-1) + t·bi+1
(r-1)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

repeated convex combination of control points

b0
(0)

b1
(0)

b2
(0)

b3
(0)

De Casteljau algorithm

bi
(r) = (1-t)·bi

(r-1) + t·bi+1
(r-1)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

repeated convex combination of control points

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1-t

1-t

1-t

t

t

t

De Casteljau algorithm

bi
(r) = (1-t)·bi

(r-1) + t·bi+1
(r-1)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

repeated convex combination of control points

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1-t

1-t

1-t

t

t

t

b0
(2)

b1
(2)

1-t

t

1-t

t

De Casteljau algorithm

bi
(r) = (1-t)·bi

(r-1) + t·bi+1
(r-1)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

b0
(3) = x(t)

repeated convex combination of control points

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1-t

1-t

1-t

t

t

t

b0
(2)

b1
(2)

1-t

t

1-t

t b0
(3) = x(t)

1-t

t

de Casteljau scheme

De Casteljau algorithm

The intermediate coefficients bi
r(t) can be written in

a triangular matrix: the de Casteljau scheme:

De Casteljau algorithm

Algorithm:
for r = 1..n do

 for i = 0..n-r do

 bi
(r) = (1-t)·bi

(r-1) + t·bi+1
(r-1)

 end for

end for

return b0
(n)

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

b0
(3) = x(t)

The whole algorithm consists only of
repeated linear interpolations.

De Casteljau algorithm

The polygon consisting of the points b0, …, bn is called
Bezier polygon. The points bi are called Bezier points.

The curve defined by the Bezier points b0, …, bn and the
de Casteljau algorithm is called Bezier curve.

The de Casteljau algorithm is numerically stable, since
only convex combinations are applied.

Complexity of the de Casteljau algorithm
• O(n2) time

• O(n) memory

• with n being the number of Bezier points

De Casteljau algorithm

Properties of Bezier curves:

• given: Bezier points b0, …, bn

 Bezier curve x(t)

• Bezier curve is polynomial curve of degree n.

• End point interpolation: x(0) = b0, x(1) = bn. The
remaining Bezier points are only generally approximated.

• Convex hull property:

 Bezier curve is completely inside the convex hull of its
Bezier polygon.

De Casteljau algorithm

• Variation diminishing
no line intersects the Bezier curve more often than its Bezier
polygon.

• Influence of Bezier points: global, but pseudo-local

• global: moving a Bezier point changes the whole curve
progression

• pseudo-local: bi has its maximal influence on x(t) at t = i /n.

• Affine invariance:
Bezier curve and Bezier polygon are invariant under affine
transformations

• Invariance under affine parameter transformations

De Casteljau algorithm

• Symmetry:
The following two Bezier curves coincide, they are
only traversed in opposite directions:

• Linear precision:
Bezier curve is line segment, if b0,…, bn are
collinear

• Invariant under barycentric combinations

1-t

t

De Casteljau algorithm

• First derivative of a Bezier curve

• Endpoints:

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

b0
(3) = x(t)

de Casteljau scheme

𝐱 𝑡 = 𝑛 𝐛1
𝑛−1

− 𝐛0
𝑛−1

-1

1

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1-t

1-t

1-t

t

t

t

b0
(2)

b1
(2)

1-t

t

1-t

t

-1

1

De Casteljau algorithm

• Second derivative of a Bezier curve

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

b0
(2)

b1
(2)

b0
(3) = x(t)

de Casteljau scheme

b0
(0)

b1
(0)

b2
(0)

b3
(0)

b0
(1)

b1
(1)

b2
(1)

1-t

1-t

1-t

t

t

t

b0
(2)

b1
(2)

-1

1

-1

1 𝐱 𝑡 = 𝑛 𝑛 − 1 𝐛2
𝑛−2

− 2𝐛1
𝑛−2

+ 𝐛0
𝑛−2

Bezier Curves
Bernstein form

Bernstein Basis

Bezier curves are algebraically defined using the
Bernstein basis:

• Bernstein basis of degree n:

)()(
1

)(
0 ,...,, n

n
nn BBBB

 inin
i tt

i

n
tB

 1:)()(

n = 10 n = 2 (quad.)

B0

B1

B2

n = 3 (cubic)

B0

B1 B2

B3

Bernstein Basis

de Casteljau algorithm

curve basis function control point

Bernstein form
𝑓 𝑡 = 𝐵𝑖

𝑛
𝑡 𝐩i

𝑛

𝑖=0

Examples

The first three Bernstein bases:

 3)3(
3

2)3(
2

2)3(
1

3)3(
0

2)2(
2

)2(
1

2)2(
0

)1(
1

)1(
0

)0(
0

:13:

13:1:

:12:1:

:1:

1:

tBttB

ttBtB

tBttBtB

tBtB

B

n = 3 (cubic)

B0

B1 B2

B3

n = 1 (linear)

B0 B1

n = 2 (quad.)

B0

B1

B2

 inin
i tt

i

n
tB

 1:)()(

Bezier Curves in Bernstein form

Bezier Curves:

•

n

i

n
iiBt

0

)()(pf

p0

p1

p2

p3

p0

p1

p2

p3

n = 3 (cubic)

B0

B1 B2

B3

p0

p1

p2

p3

p0

p1
p2

p3

t [0..1]

Summary for Bezier Curves

Bezier curves and curve design:
• The rough form is specified by the position of the control

points

• Result: smooth curve approximating the control points

• Computation / Representation:
 de Casteljau algorithm

 Bernstein form

• Problems:
 high polynomial degree

 moving a control point can change the whole curve

 interpolation of points

 Bezier splines

Towards Bezier Splines

Approximation Interpolation

Towards Bezier Splines

Interpolation problem:

• given:

 control points

 knot sequence

• wanted:

 interpolating curve x(t), i.e., x(ti) = ki for i = 0, …, n

• Approach:
"Joining" of n Bezier curves with certain intersection conditions

Towards Bezier Splines

The following issues arise when stitching together
Bezier curves:

• Continuity

• Degree

• (Parameterization)

Bezier Splines
Parametric and Geometric Continuity

Continuity

Joining of curves - continuity

• given: 2 curves

 x1(t) over [t0, t1]

 x2(t) over [t1, t2]

• x1 and x2 are Cr continuous in t1, if they coincide in

 0th – rth derivative vector in t1.

Continuity

C-1 continuity C0 continuity

C1 continuity C2 continuity

Continuity

Parametric Continuity Cr:

• C0, C1, C2... continuity.

• Does a particle moving on this curve have a smooth
trajectory (position, velocity, acceleration,...)?

• Useful for animation (object movement, camera paths)

• Depends on parameterization

Geometric Continuity Gr:

• Independent of parameterization

• Is the curve itself smooth?

• More relevant for modeling (curve design)

Bezier Splines

Local control: Bezier splines

• Concatenate several curve segments

• Question: Which constraints to place upon the control
points in order to get C-1, C0, C1, C2 continuity?

p0

p1

p2

p3

p0

p1

p2

p3

(i)

(i)

(i)

(i)

(i+1)

(i+1)

(i+1)

(i+1)

Bezier Spline Continuity

Rules for Bezier spline continuity:

• C0 continuity:

 Each spline segment interpolates the first and last control point

 Therefore: Points of neighboring segments have to coincide for
C0 continuity.

p1
(i)

(i) p0

(i) p2

p3
(i)

p0
(i+1)

p1
(i+1)

p2
(i+1)

p3
(i+1)

Bezier Spline Continuity

Rules for Bezier spline continuity:

• Additional requirement for C1 continuity:

 Tangent vectors are proportional to differences p1 – p0, pn – pn-1

 Therefore: These vectors must be identical for C1 continuity

p1
(i)

(i) p0

(i) p2

p3
(i)

p0
(i+1)

p1
(i+1)

p2
(i+1)

p3
(i+1)

Bezier Spline Continuity

Rules for Bezier spline continuity:

• Additional requirement for C2 continuity:

 𝐝− = 𝐝+

Continuity

C-1 continuity C0 continuity

G1 continuity C1 continuity

Bezier Splines
Choosing the degree

Choosing the Degree...

Candidates:

• d = 0 (piecewise constant): not smooth

• d = 1 (piecewise linear): not smooth enough

• d = 2 (piecewise quadratic): constant 2nd
derivative, still too inflexible

• d = 3 (piecewise cubic): degree of choice
for computer graphics applications

Cubic Splines

Cubic piecewise polynomials:

• We can attain C2 continuity without fixing the second
derivative throughout the curve

• C2 continuity is perceptually important
 We can see second order shading discontinuities

(esp.: reflective objects)

 Motion: continuous position, velocity & acceleration
Discontinuous acceleration noticeable (object/camera motion)

• One more argument for cubics:
 Among all C2 curves that interpolate a set of points (and obey to

the same end conditions), a piecewise cubic curve has the least
integral acceleration (“smoothest curve you can get”).

– see AdditionalMaterial/CubicsMinimizeAcceleration.pdf

Spline Surfaces

Spline Surfaces

Two different approaches

• Tensor product surfaces

 Simple construction

 Everything carries over
from curve case

 Quad patches

 Degree anisotropy

• Total degree surfaces

 Not as straightforward

 Isotropic degree

 Triangle patches

 “Natural” generalization of curves

Tensor Product Surfaces

Tensor Product Bezier Surfaces

Bezier curves:
repeated linear interpolation

bilinear interpolation:
repeated linear interpolation

repeated bilinear interpolation:
gives us tensor product Bezier surfaces
(example shows quadratic Bezier surface)

now a different setup:
4 points b00, b10, b11, b01

parameter area [0,1] [0,1]

b00

b01

b10

b11

x(u,v)

De Casteljau Algorithm

De Casteljau algorithm for tensor product surfaces:

v

u b(0,0,0; 0,0,0)

b(1,1,1; 0,0,0)

b(0,0,0; 1,1,1)

b(1,1,1; 1,1,1)

b(u,u,u; v,v,v)

b(u,0,0; v,0,0)

b(u,0,0; v,1,1)

b(u,1,1; v,0,0)

b(u,1,1; v,1,1)

b(u,u,0; v,v,1)

b(u,u,0; v,v,0)

b(u,u,1; v,v,1)

b(u,u,1; v,v,0)

Tensor Product Surfaces

Tensor Product Surfaces:

• “Curves of Curves”

• Order does not matter

n

j

n

i
jiij

n

i

n

j
jiji

n

i

n

j
jiji

vbub

vbub

vbubvu

1 1
,

1 1
,

1 1
,

)()(

)()(

)()(),(

p

p

pf

Tensor Product Surfaces
Bezier Patches

Bezier Patches

Bezier Patches:

• Remember endpoint interpolation:

 Boundary curves are Bezier
curves of the boundary
control points

d = 10 d = 3

B0

B1 B2

B3

Continuity Conditions

For C0 continuity:

• Boundary control points must match

For C1 continuity:

• Difference vectors must match at the boundary

C0 Continuity

C1 Continuity

C1 Continuity

Total Degree Surfaces

Spline Surfaces

Two different approaches

• Tensor product surfaces

 Simple construction

 Everything carries over
from curve case

 Quad patches

 Degree anisotropy

• Total degree surfaces

 Not as straightforward

 Isotropic degree

 Triangle patches

 “Natural” generalization of curves

Bezier Triangles

Alternative surface definition: Bezier triangles

• Constructed according to given
total degree

 Completely symmetric:
No degree anisotropy

• Can be derived using a triangular
de Casteljau algorithm

 Barycentric interpolation

Barycentric Coordinates

Barycentric Coordinates:

• Planar case:
Barycentric combinations of 3 points

• Area formulation:

1:with,321 pppp

 1

)),,((

)),,((
,

)),,((

)),,((
,

)),,((

)),,((

321

21

321

31

321

32

ppp

ppp

ppp

ppp

ppp

ppp

area

area

area

area

area

area

p1

p2

p3

p

Example

Cubic Bezier Triangle: c

a b
p(a,a,a) p(b,a,a) p(b,b,a) p(b,b,b)

p(c,a,a) p(c,b,b)

p(c,c,b)

p(c,c,c)

p(c,c,a)

p(a,b,c)

De Casteljau Algorithm

p(a,b,c)

a

b

c

p(a,a,a) p(c,a,a)

p(c,c,a)

p(c,c,c)

p(c,c,b)

p(c,b,b)

p(b,a,a)

p(b,b,a)
p(b,b,b)

p(x,b,c)

p(x,c,c)

p(x,a,a)

p(x,b,b)
p(x,a,b)

p(x,a,c)

p(x,x,c)

p(x,x,a)

p(x,x,b)

p(x,x,x)

1

,

 cbax

Continuity

We need to assemble Bezier triangles continuously:

• What are the conditions for C0, C1 continuity?

• As an example, we will look at the quadratic case...

Continuity

Situation:

• Two Bezier triangles meet along a common edge.

 Parametrization: T1 = {a, b, c}, T2 = {c, b, d}

 Polynomial surfaces F(T1), G(T2)

 Control points:

– F(T1): f(a, a), f(a, b), f(b, b), f(a, c), f(c, c), f(b, c)

– G(T2): g(d, d), g(d, b), g(b, b), g(d, c), g(c, c), g(b, c)

b

c

d

a
F

G

Continuity

Situation:
b

c

d

a F

G

f(a, a)

f(a, b)

f(b, b)

f(a, c)
f(c, c)

f(b, c)
g(d, d)

g(b, d)

g(b, b)

g(c, d)

g(c, c)

g(b, c)

Continuity

C0 Continuity:

• The points on the boundary
have to agree:
f(b, b) = g(b, b)
f(b, c) = g(b, c)
f(c, c) = g(c, c)

• Proof: 1,: Let cbx

),(),(),(

),(),(2),(

),(

),(

),(

),(2

),(

),(

),(),(),(

22

||

2

||||

2

xxgxcgxbg

ccgcbgbbg

ccg

ccf

cbg

cbf

bbg

bbf

xcfxbfxxf

Continuity

C1 Continuity:

• We need C0 continuity.

In addition:

• Points at hatched
quadrilaterals are coplanar

• Hatched quadrilaterals are
an affine image of the same
parameter quadrilateral

Curves on Surfaces, trimmed NURBS

Quad patch problem:

• All of our shapes are parameterized over rectangular or
triangular regions

• General boundary curves are hard to create

• Topology fixed to a disc (or cylinder, torus)

• No holes in the middle

• Assembling complicated shapes is painful

 Lots of pieces

 Continuity conditions for assembling pieces become complicated

 Cannot use C2 B-Splines continuity along boundaries when using
multiple pieces

Curves on Surfaces, trimmed NURBS

Consequence:

• We need more control over the parameter domain

• One solution is trimming using curves on surfaces (CONS)

• Standard tool in CAD: trimmed NURBS

Basic idea:

• Specify a curve in the parameter domain that
encapsulates one (or more) pieces of area

• Tessellate the parameter domain accordingly to cut out
the trimmed piece (rendering)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

Summary

• Bezier Curves

• de Casteljau algorithm

• Bernstein form

• Bezier Splines

• Bezier Tensor Product Surfaces

• Bezier Total Degree Surfaces

