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Abstract. The aim of the paper is the study the orbits of the action of PGL4 on the space P19

of the cubic surfaces of P3, i.e. the classification of cubic surfaces up to projective motions. All
the cubic surfaces with finitely many lines are parametrized by a variety Q ⊂ P19, explicitely
constructed as the union of (22) disjoint irreducible components which are either points or open
subsets of linear spaces. More precisely, the orbit of each cubic surface intersects one component
X of Q in a finite number of points and the action of PGL4 restricted on each component X
is equivalent to the action of a finite group GX , which is explicitely computed. Finally the
cubic surfaces of each component of Q are studied in details by determining their stabilizers,
their rational representations and whether they can be expressed as the determinant of a 3× 3
matrix of linear forms.
The results are obtained with computational techniques and with the aid of some computer
algebra systems like CoCoA, Macaulay and Maple.

Introduction

Algebraic surfaces of degree 3 in the projective space have been studied for many years from several
different points of view. The nice configuration of the 27 lines on a smooth cubic surface and its degenerations
in the singular cases, as well as the possibility of a classification of these surfaces have been investigated since
the last century by Salmon [Sa], Schläfli [Sc1] and Cayley [Ca] and, more recently, by other authors: among
them we recall B. Segre [S] and Yu. Manin [M]. Therefore many aspects of cubic surfaces are classical and
very well-understood.

In the last two decades, the development of algorithms, their successful implementation in various
computer algebra systems and, above all, the improvement of computer technology have provided additional
important tools for investigating new and old mathematical problems.

In this paper we propose to use such tools to present a novel approach to the study of cubic surfaces. By
doing so, we not only recover well–known results, but are also able to classify cubic surfaces, giving explicit
models of each class and studying each model completely.

More precisely, this paper deals with the study of the action of the group PGL4 of linear transformations
of P3 on the variety of cubic surfaces. This problem was already considered by a number of authors (see [B],
[BD], [Se1], [Se2], [DO], . . . ) but, apparently, a complete answer has not been given so far. What we obtain
here is an explicit construction and the complete classification of the orbits of all the cubic surfaces (with
finitely many lines).

The first remark we make in this paper is that almost all cubic surfaces of P3 (and in particular all the
smooth ones) contain a specific configuration of five lines (here called an “L-set”) which can be fixed up to
a projective motion of P3. Moreover such L-sets characterize the elements of PGL4, i.e. given two L-sets,
there exists exactly one projectivity which maps the first one into the second one. Therefore, in order to
classify cubic surfaces up to projectivity, the first step can be to fix a specific L-set and study the linear
system of cubic surfaces through it, which turns out to be a four–dimensional projective space. We show
that this P4 parametrizes all the smooth cubic surfaces and also some singular ones. Therefore, we determine
the equation of the subvariety (hypersurface) Σ of P4 whose points correspond to singular cubic surfaces.
However the space P4 \Σ is not yet the minimal space parametrizing smooth cubic surfaces, since more than
one point of it (precisely 25, 920 in the general case) belongs to the same orbit. A deeper analysis of this
situation leads to realize that there is a further action of a finite group G (an index two subgroup of the
Weyl group E6, hence of order 25, 920) on P4 \ Σ such that its quotient by G is precisely the orbit space of
smooth cubic surfaces.
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The next step is the study of singular cubic surfaces. First we consider those which do not contain an
L-set: they give rise (when irreducible and not ruled) to 12 distinct orbits (represented by specific cubic
surfaces, say T1, . . . , T12) and a set of orbits parametrized by P1 \∆ (where ∆ is a finite set) and represented
by a one–dimensional family T13(p, q), (p, q) ∈ P1 \ ∆. The orbits listed here correspond precisely to those
cubic surfaces which contain a specific configuration of lines, e.g. the orbit of T1 is the set of all cubic surfaces
containing exactly one line, the orbit of T2 consists of those cubic surfaces containing two meeting lines, . . . ,
the union of the orbits of the T13(p, q)’s is the set of all cubic surfaces containing precisely 7 lines having a
peculiar incidence relation (see Figure 1 below for the complete list of the configurations of lines).

Successively, we consider the singular cubic surfaces containing an L-set. They are already parametrized
by Σ ⊂ P4 (at least in a rough way: the orbit of any singular cubic surface of this type intersects Σ only
in a finite number of points). We can however be much more precise: we can indeed divide the orbits of
these singular cubic surfaces into 8 other disjoint classes (according to the number of singular points and
the number of lines): the first class consists of cubic surfaces with one singular point and 21 lines and
is parametrized by an open subset of a three–dimensional linear space, the second class consists of cubic
surfaces with two singular points and 16 lines and is parametrized by an open subset of a two–dimensional
linear space, . . . , each of the last two classes consists of a single orbit, which collects, respectively, cubics
with four singular points and 9 lines and three singular points and 8 lines (see Theorem 1.9). This is, in
short, the contents of Section 1.

In Section 2 we begin the study of the orbits of T1, . . . , T12, T13(p, q) and we show that all these cubic
surfaces, except those projectively equivalent to T1, can be expressed as the determinant of 3 × 3 matrices
of linear forms. Since all the remaining cubic surfaces (i.e. those containing an L-set, ruled surfaces, cones
and the reducible ones) also have this property, we prove in this way that T1 is the only cubic surface, up to
a projective motion, which is not the determinant of a matrix of linear forms. Moreover, we give a rational
representation of T1, . . . , T12, T13(p, q), expressing each of them as the blow–up of the plane at six points.

In Section 3 we analyze the groups of projective motions of T1 . . . , T12, T13(p, q), describing each of them
in terms of generators and relations.

In Section 4 we study the smooth cubic surfaces: we represent each of them as the determinant of a
3×3 matrix and also as a rational variety (i.e. as the blow–up of the plane at six points in general position),
we determine the explicit equations of their 27 lines and we describe the action of the Weyl group E6 in
terms of L-sets.

Finally, Section 5 and 6 contain the proofs of the results stated in Section 1, together with a more
detailed study of the singular cubic surfaces containing an L-set. In this paper we do not analyze cubic
surfaces with infinitely many lines, but their classification (although rather long) is quite easy.

The classification of the cubic surfaces given in this paper can be compared with that given by Schläfli
and Cayley (based on the identification of the types of singularity) and presented in a modern language
by Bruce and Wall in [BW]. It turns out that the known classification is coarser than that one given here.
First of all, many singular cubic surfaces (with the same number of lines and the same kind of singularities)
are here parametrized by linear spaces of positive dimension. Even more, we remark that the specific cubic
surfaces T9 and T10 (which lye in the same class according to Schläfli–Cayley) are not projectively equivalent.

As already noted, on the space P4 \ Σ acts a finite group G such that (P4 \ Σ)/G is the orbit space of
smooth cubic surfaces. An analogous construction can be worked out for each of the other components of
the variety Q (parametrizing the cubic surface with finitely many lines) introduced in Theorem 1.9: one can
find suitable finite groups acting on these components in such a way that the corresponding quotients give
the orbit spaces (see Section 6). A deeper study of the actions of these groups with the aim of obtaining
either the moduli spaces and a complete description of the groups of automorphisms of all the cubic surfaces
will be the objective of a further investigation.

One of the aims of this paper is to give a self-contained exposition of the subject presented; the techniques
used to prove most theorems are quite elementary, but in many cases they require a careful use of a computer
algebra system. For instance, a typical intermediate computation we shall perform many times is the following
(see Lemma 2.2): we have the equation of a cubic surface S, whose coefficients depend on several parameters;
we intersect S with the generic plane π through a line l (of given equation) contained in S, obtaining a plane
cubic curve which splits into the line l and a conic C ⊂ π. The usual problem we have to solve is to find
out for which planes π the conic C is reducible, i.e. its discriminant vanishes. Of course, this procedure is

2



elementary from a theoretical point of view; nevertheless, if there are many parameters involved (as it indeed
happens in our situation) one can carry out such computations only with a ‘suitable’ use of some symbolic
computation package.

In particular, many computations were performed using Maple (mainly for manipulating multivariate
polynomials and for their factorization), while in a few instance some checks were done with Gröbner bases
techniques and the aid of Macaulay (see [BS]) and CoCoA (see [CNR]).

The computations where done on a DEC Alpha 3000/300 workstation; some of them could be carried
out successfully on a smaller computer.

1. Main results

Let K be an algebraically closed field of characteristic 0.
We recall that the space of all cubic surfaces of P3 := P3(K) can be parametrized by the projective space
P19 := P19(K), i.e. if

F := a1x
2y + a2x

2z + a3xy
2 + a4xyz + a5xyt+ a6xz

2 + a7xzt+ a8y
2t+ a9yzt+ a10yt

2+

a11x
3 + a12x

2t+ a13xt
2 + a14y

3 + a15y
2z + a16yz

2 + a17z
3 + a18z

2t+ a19zt
2 + a20t

3
(0)

is a cubic form in the variables x, y, z, t defining a cubic surface S := V (F ) ⊂ P3, then we associate with
it the point (a1, . . . , a20) ∈ P19; observe that with this notation we have fixed particular coordinates of P19

and these will be the coordinates of P19 we shall use from now on.
By PGL4 := PGL4(K) we denote the group of projectivities of P3, which acts canonically on P19 as follows:
given a cubic surface S := V (F ) ⊆ P3 and an element A ∈ PGL4, denoting by X the column vector of the
variables x, y, z, t, let us define the form AF ∈ k[x, y, z, t] by

(AF )(x, y, z, t) := F (AX).

In this way the cubic form (AF )(x, y, z, t) defines a new cubic surface, say A(S), in P3. We shall denote by
OPGL4

S (or simply by OS) the orbit of S under the above action.

We want to study these orbits in P19, i.e. we want to describe cubic surfaces up to a linear change of
coordinates. First of all we partition P19 into two classes: A and B := P19 \ A, where

A := {cubic surfaces containing a finite number of lines}

and

B := {cubic surfaces containing an infinite number of lines}.

It is clear that A and B are stable under the action of PGL4. Moreover, if S is a c.s. having a finite number
n of lines, then all the cubic surfaces in OS have the same number n of lines and, even more, with the same
incidence relations.

The following well–known result (see for instance [C]) characterizes the objects of class B:

Theorem 1.1. The class B consists of:
i) the reducible cubic surfaces;
ii) the irreducible cones;
iii) the irreducible cubic surfaces having a double line (i.e. the general ruled cubic surfaces).

Proof. See Section 5.

In the sequel surfaces of type iii) above will be simply called “ruled surfaces” (RS); it is understood
that cones and reducible cubic surfaces are not in the class RS.

In this paper we are concerned about the c.ss. in the class A. The first tool we shall use is the following:
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Definition. Let (l1, . . . , l5) be a 5-tuple of lines of P3 intersecting according to the following conditions:

l2 meets l1, l3, l5 in three different points, l4 meets l1 and l3 in two different points

and there are no other intersections

Such a system of lines will be called an L-set (of lines).

Notation. If A and B are two points, then 〈A+B〉 denotes the line through them; if r and s are two
meeting lines, then 〈r + s〉 denotes the plane containing them.

The following fact holds:

Lemma 1.2. Let (l1, . . . , l5) and (l′1, . . . , l
′
5) be two L-sets. Then there exists exactly one projectivity which

maps li to l′i, for any i = 1, . . . , 5.

Proof. Let A,B,C,D,E be the five intersection points of the first L-set, i.e.

A = l1 ∩ l2, B = l1 ∩ l4, C = l3 ∩ l4, D = l2 ∩ l3, E = l2 ∩ l5
and let P := l4 ∩ 〈l2 + l5〉, Q := 〈P +D〉 ∩ l5. It is easy to see that A,B,C,E,Q are five points in
general position. Denoting by A′, B′, C′, E′, Q′ the analogous points arising from the L-set (l′1, . . . , l

′
5), from

the fundamental theorem of projectivities, there exists exactly one projectivity mapping A,B,C,E,Q into
A′, B′, C′, E′, Q′, respectively, hence mapping also li into l′i, for i = 1, . . . , 5. �

We see therefore that L-sets characterize linear changes of coordinates in P3. The first application of
L-sets is the following:

Theorem 1.3. Any smooth cubic surface of P3 passes through an L-set; more precisely, it contains exactly
25, 920 L-sets.

Proof. See Section 5.

As far as properties defined up to a linear change of coordinates are concerned, lemma 1.2 suggests that
it is sufficient to consider a specific L-set; we fix for instance the following

l1 := (y, z); l2 := (x, y); l3 := (x, t); l4 := (x− t, y − z); l5 := (x− y, z + t) (1)

where the symbol (f, g) represents the line of equations f = 0 = g. From now on, by L∗ we shall denote the
L-set (l1, l2, l3, l4, l5) above.

If we take the generic cubic surface and we require that it contains the L∗-set, we obtain a linear system
of cubic surfaces of dimension 4 which can be described for instance by the following equation:

a(2x2y−2xy2+xz2−xzt−yt2+yzt)+b(x−t)(xz+yt)+c(z+t)(yt−xz)+d(y−z)(xz+yt)+g(x−y)(yt−xz) = 0
(2)

If P = (a, b, c, d, g) is a point of the space P4 defined above, then by SP we mean the corresponding c.s. of
P3 given by (2).

We denote by

φ : P4 −→ P19 the map defined by P = (a, b, c, d, g) 7→ coordinates of SP

i.e., if we use the coordinates of P19 introduced before in (0) and the equation (2), we get:

φ(a, b, c, d, g) := (2a, b− g,−2a, d+ g, b+ g, a− d− c,−a− b− c, d− g, a+ c− d,−a− b+ c, 0, . . . , 0).

Note that φ is a linear, one–to–one map. In the sequel we shall identify φ(P4) with P4, hence (a, b, c, d, g)
can represent either a point of P4 or the corresponding point φ(a, b, c, d, g) ∈ P19.

From 1.3 and 1.2 we see that the family (2) describes, in particular, all the smooth c.ss. up to pro-
jectivities. Of course, among the surfaces of (2), there are also singular and reducible ones. The following
theorems describe the points of P4 which correspond to them and give some information about the number
of lines of the surfaces in the family (2).
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Theorem 1.4. Let P := (a, b, c, d, g) ∈ P4, and let SP be the corresponding cubic surface. Then the
following facts are equivalent:

i) SP is smooth;
ii) SP has 27 distinct lines;
iii) P 6∈ Σ, where Σ := V (σ) is the hypersurface of P4 defined by:

σ := c(a+ b− c)(2a+ b− d)(a− c− d)(a+ c+ g)(a+ c− g)

(4ac− g2)(a2 + ac− 2ad+ ag + d2 − dg)(a2 + 2ab+ ac− ag + b2 − bg)

(4a2 + 3ab− 4ac− 3ad− bc− 2bd+ bg + cd+ dg)

(4a3 + 4a2b− 8a2c− 4a2d+ ab2 − 4abc− 2abd+ 2abg + 4ac2 + 4acd+ ad2+

2adg + b2c+ b2g + 2bcd− 2bcg + cd2 − 2cdg − d2g).

Proof. See Section 5.

Theorem 1.5. All the irreducible cubic surfaces passing through the L∗-set contain a finite number of lines
(i.e. are in A).

Proof. See Section 5.

Finally we characterize the points of P4 corresponding to reducible c.ss.:

Theorem 1.6. Let P := (a, b, c, d, g) ∈ P4, then the cubic surface SP is reducible if and only if P ∈ R,
where

R := V (b+ d, a− c− d) ∪ V (a+ b− c, 2a+ b− g) ∪ V (a, c, g) ∪ V (2a+ b− d, ac+ (a+ b)(a+ b− g))

Proof. See Section 5.

Using 1.4 and the previous results, we conclude that all the smooth cubic surfaces are, up to a linear
change of coordinates, parametrized by the points of P4 \ Σ. Analogously, all the singular and irreducible
cubic surfaces containing an L-set are, up to a linear change of coordinates, parametrized by Σ \ R.

These facts can be summarized by the following:

Theorem 1.7. With the above notations:
1) The image of the map

ψ1 : PGL4 ×
(

P4 \ Σ
)

−→ P19 defined by (A,P ) 7→ A(SP )

is the open set of P19 consisting of all the smooth cubic surfaces.
2) The image of the map

ψ2 : PGL4 × (Σ \ R) −→ P19

defined as above is the variety of cubic surfaces containing an L-set, singular and irreducible. �

Clearly, the map ψ1 is finite: it is straightforward to see that, if S is a smooth c.s., then ♯(ψ−1
1 (S)) is the

number of L-sets contained in S (the same holds for the map ψ2). Hence, from 1.3, we obtain that 25, 920
points of P4 \ Σ belong to the same orbit in P19. Theorem 1.10 below will show that this set of points is
itself an orbit with respect to an action of a suitable group on P4 \ Σ.

So far we have considered cubic surfaces in the class A that contain an L-set. Here we want to classify
the remaining cubic surfaces in A. Let us summarize the situation: the c.ss. in A not containing an L-set
split into 13 families: 12 of them are orbits, say OT1

, . . . ,OT12
. Obviously, to each of these orbits there

corresponds a specific configuration of lines of its cubic surfaces which we shall denote by Li, (i = 1, . . . , 12),
and conversely, if the lines of a cubic surface are in one of the configurations Li (i = 1, . . . , 12), then it turns
out that the cubic surface is in OTi

. The last family of cubic surfaces in A is slightly more complicated
to describe: it is given by the set of c.ss. containing precisely 7 lines as in a configuration of type L13
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(see Figure 1). This family, say W , can indeed be parametrized by the points of a one–dimensional quasi–
projective variety. The configurations of the lines L1, . . . , L13 are described as follows:

Figure 1

In the above figure, the dashed lines have the following meaning: they either join coplanar lines (in L4) or
collinear points (in L9, L10, L12, L13). Moreover lines which do not meet in the Figure are mutually skew
and a small circle indicates a singular point on the corresponding surface.

Here we give a list of representatives T1, . . . , T12 of the above orbits and a family T13(p, q), such that the
orbits of the c.ss. in it cover the whole W , as long as (p, q) varies in P1\∆, where ∆ = {(1, 0), (0, 1), (−2, 1)}:
these three points correspond exactly to those values of (p, q) for which T13(p, q) is reducible.

Similarly to the identification φ(P4 \Σ) = P4 \Σ made before, we identify P1 \∆ with the subvariety of
P19 given by

{(p+ q,−p,−p, p,−q, p, 0, 2p,−2p, 0, . . . , 0) ∈ P19 | (p, q) ∈ P1, pq(p+ 2q) 6= 0}

obtained by computing the coefficients of T13(p, q).

T1 := xy2 + yt2 + z3

T2 := xyt+ xz2 + y3

T3 := xyt− xzt+ y3

T4 := x2y − x2z − xy2 + xz2 + y3 − y2t+ yzt

T5 := x2y + xz2 + y2t

T6 := xy2 + xyt+ xzt+ yt2

T7 := 2x2y − x2z + xy2 − xyz − xyt− y2t+ yzt

T8 := x2y − x2z − 2xy2 + 2xyz − xyt− xz2 + xzt+ y2t

T9 := x2y − x2z + xy2 − xyz + xz2 − y2t

T10 := x2y − x2z − 2xyz + xz2 + y2t

T11 := x2y + x2z − xy2 + xyt− xzt− yt2

T12 := x2y + xyz − 2xyt− xz2 + xzt− y2t+ yzt

T13(p, q) := pxy(x − t) + q(y − z)(x2 − xy − xz + 2yt)

(3)

It is easy to see that each configuration Li is unique up to projectivity. Hence, we choose the specific
configurations of type Li (say L∗

i ) given by the lines lying on the surface Ti, for any i = 1, . . . , 13; let us list
them:
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L1
∗ := [l1]

L2
∗ := [l1, l2]

L3
∗ := [l1, l2, (y, t)]

L4
∗ := [l1, l2, (y, x− z)]

L5
∗ := [l1, l2, l3]

L6
∗ := [l1, l2, l3, (y, t)]

L7
∗ := [l1, l2, l3, l4, (x, y − z)]

L8
∗ := [l1, l2, l3, l4, (y, x+ z − t)]

L9
∗ := [l1, l2, l3, l4, (y, x− z), (x− t, z − t)]

L10
∗ := [l1, l2, l3, l4, (y, x− z), (x− t, y − z + t)]

L11
∗ := [l1, l2, l3, (x− y, y − t), (y, x− t), (x − y, z + t)]

L12
∗ := [l1, l2, l3, l4, (y, z − t), (x, y − z), (x− t, y − z + t)]

L13
∗ := [l1, l2, l3, l4, (y, x− z), (x, y − z), (x− t, y − z + t)]

(4)

where the lines l1, . . . , l4 (already introduced in the definition of the L∗-set) are:

l1 = (y, z), l2 = (x, y), l3 = (x, t), l4 = (x − t, y − z).

The situation described before can be stated precisely in the following result:

Theorem 1.8. Let P ⊆ P19 be the variety given by:

P := (P4 \ Σ) ∪ (Σ \ R) ∪ (P1 \ ∆) ∪
(

12
⋃

i=1

Ti

)

.

This union is disjoint and the orbits of the points of P cover A. More precisely, the orbits of the points of
P4 \ Σ describe all the smooth cubic surfaces; the orbits of the points of Σ \ R describe the singular cubic
surfaces with finitely many lines containing an L-set; the orbits of the points P1 \ ∆ describe all the cubic
surfaces with the lines as in configuration L13; the orbits of the points Ti describe all the cubic surfaces with
the lines as in configuration Li, for i = 1, . . . , 12.

Proof. See Section 5.

The above theorem can be improved by classifying also the cubic surfaces in Σ; in Section 6 we will
see that, although Σ has several components, to describe all the singular c.ss. containing an L-set up to
projectivity it is enough to consider only one of them. In particular we take the component of equation
a + c − g = 0 in P4: the surfaces in this component are precisely those having C = (0, 1, 1, 0) as singular
point. Substituting c = g − a in (2), we get a linear system of dimension 3 which is denoted by P3

C ; by Σ1

we denote its degenerate locus consisting of the c.ss. either reducible or having a smaller number of lines
than the general element of P3

C . Analogously, in Section 6, we will introduce other suitable linear spaces and
their degenerate loci and we obtain the following extension of Theorem 1.8:

Theorem 1.9. Let Q ⊆ P19 be the variety given by:

Q := (P4 \ Σ) ∪ (P3
C \ Σ1) ∪ (P2

C,D \ Σ2) ∪ (P1
C,D,E \ Σ3)∪

∪ (P2
C \ Σ′

1) ∪ (P1
C \ Σ′′

1) ∪ (P1
C,D \ Σ′

2) ∪ T15 ∪ T14 ∪ (P1 \ ∆) ∪
(

12
⋃

i=1

Ti

)

.

Then this union is disjoint and the orbits of the points of Q cover A. Moreover:
- the component P3

C \ Σ1 parametrizes the cubic surfaces having one singularity and precisely 21 lines;
- P2

C,D \ Σ2 parametrizes the cubic surfaces having two singularities and precisely 16 lines;
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- P1
C,D,E \ Σ3 parametrizes the cubic surfaces having three singularities and precisely 12 lines;

- P2
C \ Σ′

1 parametrizes the cubic surfaces having one singularity and precisely 15 lines;
- P1

C \ Σ′′
1 parametrizes the cubic surfaces having one singularity and precisely 10 lines;

- P1
C,D \ Σ′

2 parametrizes the cubic surfaces having two singularities and precisely 11 lines;
- the point T15 parametrizes the cubic surfaces having four singularities and precisely 9 lines;
- the point T14 parametrizes the cubic surfaces having three singularities and precisely 8 lines.

Proof. See Section 6.

Let us remark that the above theorem does not give yet the space of the orbits of cubic surfaces in P3:
for instance, the space of the orbits of smooth c.ss. is a quotient of the main component P4 \ Σ of Q.

More precisely, recalling that the group of the admissible permutations of the 27 lines of a smooth cubic
surface is a finite group of order 51, 840, denoted by E6 (see [H], Ch. V, 4.10.1 and Section 4), we will prove
the following:

Theorem 1.10. There exists an action of an index two subgroup G of E6 on P4 \ Σ in such a way that
the points of the variety (P4 \Σ)/G are in a one–to–one correspondence with the orbits of the smooth cubic
surfaces.

Proof. See Section 4.

For a similar result see also [B] and [BD].

Remark 1.11. Analogous considerations could be repeated for all the components of Q, since several
points of these varieties (when of dimension at least one) represent the same orbit and can be identified
under actions of suitable finite groups. In Section 6 we explicitly give these groups and their specific actions.
A more detailed description of the quotient of each component, also from the point of view of Invariant
Theory (see for instance [St]), will be the subject of a further investigation.

Here we describe, in addition to Theorem 1.10, only the situation concerning the component P1\∆ ⊂ Q,
obtaining the following:

Proposition 1.12. There is an action of the symmetric group S3 on P1 \∆ such that there is a one–to–one
correspondence between the points of (P1 \ ∆)/S3 and the orbits of the cubic surfaces of the family W .

Proof. See Section 5.

2. Study of T1, . . . , T13: lines, rational and determinantal representations

We shall give detailed information on the cubic surfaces introduced in the previous section, assuming all
the results stated there; more precisely, in this section we are going to find, for each c.s. Ti, its parametric
representation as a rational variety and (whether it is possible) a 3 × 3 matrix of linear forms whose deter-
minant gives the equation of Ti. Finally, in the next section, we will give the list of the groups Stab(Ti) of
the projective motions of Ti ⊂ P3, for any i.

First of all we introduce some notation and we describe a procedure which allows, under suitable
hypothesis, to compute the lines on a cubic surface and which will be applied many times.

Notation 2.1. Let S be an irreducible cubic surface and let r = (f, g) be a line contained in S (f and g
are linear forms in x, y, z, t); we denote by πr(p, q) the pencil of planes of center r, i.e.

πr(p, q) : pf(x, y, z, t) + qg(x, y, z, t) = 0

and by Cr(p, q) the conic residual to r on the plane πr(p, q), i.e. such that

S ∩ πr(p, q) = r ∪ Cr(p, q).

The discriminant of Cr(p, q) is a homogeneous polynomial in p and q, say Dr(p, q).

The proof we are giving here of the following result (see also [R1]), although quite elementary, involves
polynomials in too many variables to be handled without the use of a computer. On the other hand, in this
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specific case, as in many other parts of this paper, the computation can almost immediately be carried out
by a computer algebra system.

Lemma 2.2. Let S be a cubic surface containing a line r. If Dr(p, q) ≡ 0, then there are infinitely many
lines on S meeting r; otherwise Dr(p, q) has degree 5 in p and q and hence there are at most 10 distinct lines
meeting r.

Proof. This fact can be shown by a direct computation: up to a linear change of coordinates, we can assume
that r has equation (x, y). Let f(x, y, z, t) = 0 be the equation of the generic surface S through r (f can
be obtained from (0) by imposing a17 = a18 = a19 = a20 = 0) and let πr(p, q) : px + qy = 0 the pencil of
planes containing r. Assuming p 6= 0, the substitution x = −q/py in f gives, up to a non–zero constant, the
polynomial yg(y, z, t), where

g :=
(

a14p
3 − a3p

2q + a1pq
2 − a11q

3
)

y2 +
(

a15p
3 − a4p

2q + a2pq
2
)

yz +
(

a16p
3 − a6p

2q
)

z2+

+
(

a8p
3 − a5p

2q + a12pq
2
)

yt+
(

a9p
3 − a7p

2q
)

zt+
(

a10p
3 − a13p

2q
)

t2

is the equation of the conic Cr(p, q) on the plane πr(p, q). It is clear that Cr(p, q) is reducible if and only if
its discriminant Dr(p, q) is zero. The direct computation of the discriminant gives the following polynomial
of degree 5 in p, q

(

a8
2a16 − a8a9a15 + a9

2a14 − 4a10a14a16 + a10a15
2
)

p5 + (. . .)p4q + (. . .)p3q2 + (. . .)p2q3 + (. . .)pq4+

+
(

−a2
2a13 + a2a7a12 + 4a6a11a13 − a6a12

2 − a7
2a11

)

q5

(for short, we indicate only the first and the last coefficient). Hence, in general, there are at most 10 lines
meeting r.
If Dr(p, q) ≡ 0 then any conic Cr(p, q) is the union of two lines. Suppose that there are finitely many lines
on S meeting r; then almost every plane πr(p, q) meets S in r3. This implies that every point of r is triple
for S, which is then reducible. �

In the case Dr(p, q) 6≡ 0, let us denote by π1(r), . . . , π5(r) the planes (not necessarily distinct) cor-
responding to the five roots of Dr(p, q); on each of them, the plane section of S splits into three lines.
Conversely, if s is a line on S that meets r, then s lies on one of these five planes.

Definition. Let S ⊆ P3 be any cubic surface passing through two coplanar lines r1 and r2. The plane
defined by r1 and r2, if not contained in S, intersects S in a further line (not necessarily distinct from r1
and r2) that will be called residual of r1 and r2 and will be denoted by res (r1, r2).

We sketch here a procedure that allows us to compute the lines of a cubic surface that passes through
two given incident lines r1 and r2.

Algorithm 2.3

Input: A cubic surface S passing through two incident lines r1 and r2;
Output: Either all the lines on S or ‘infinity’ if there are infinitely many lines on S;

r3 := res (r1, r2);
lines:= {r1, r2, r3};
For l in {r1, r2, r3} do

Let πl(p, q) be the generic plane of the pencil of planes through l;
if Dl(p, q) ≡ 0 then

RETURN(‘infinity’)
end if

X := {(p, q) ∈ P1 | Dl(p, q) = 0};
For (p, q) in X do

call σ1 and σ2 the two linear factors in which Cl(p, q) splits;
lines:= lines

⋃ {(πl(p, q), σ1), (πl(p, q), σ2)}
end For

end For

RETURN(lines)
end

9



The output of the above Algorithm is therefore a set of couple of planes, where each couple defines a
line.

The correctness of the Algorithm follows essentially from two facts: on one hand any line contained in
S intersects the plane 〈r1 + r2〉 in a point which is either on r1 or on r2 or on res (r1, r2). On the other hand,
if S contains two meeting lines l and l′, which therefore define a plane 〈l + l′〉 = πl(p0, q0), then necessarily
the corresponding conic Cl(p0, q0) splits into the product of two linear forms in x, y, z, t.

The applicability of the Algorithm clearly depends on the possibility of finding the solutions X in (p, q)
of the equation Dl(p, q) = 0 (and on the fact that one has to know in advance two meeting lines of the cubic
surface).

The above Algorithm is anyway enough to verify that the lines of Ti (i = 2, . . . , 13) are in the configu-
ration Li

∗, as soon as one takes as input two meeting lines of Li
∗. A slight modification of Algorithm 2.3

allows one to check that T1 contains only the line l1.
Again using Algorithm 2.3, we shall be able to obtain the equations of the 27 lines on a smooth cubic surface
passing through the fixed L∗-set (see Section 4).

It is well–known that the generic cubic surface is a rational variety and that its equation can be expressed
as a determinant of a 3 × 3 matrix of linear forms in k[x, y, z, t] (see for instance [S] or [C]). We sketch here
a method which allows us to explicitly give a rational representation of those cubic surfaces, introduced in
(3), which have at least three lines as in configuration L5, and moreover, which expresses the equation of
each of them as a determinant of a 3 × 3 matrix of linear forms.
In the L∗-set and in the configurations L∗

i , for i = 5, . . . , 13, there are always the three lines l1 = (y, z),
l2 = (x, y), l3 = (x, t), so we can study them considering cubic forms F such that V (F ) contains l1, l2, l3,
i.e.:

F := a1x
2y + a2x

2z + a3xy
2 + a4xyz + a5xyt+ a6xz

2 + a7xzt+ a8y
2t+ a9yzt+ a10yt

2. (5)

Let Q1 := (w, 0, 0, v) be a point of l1 and Q3 := (0, w, v, 0) be a point of l3 (u, v, w ∈ K) and let l(u, v, w) be
the line 〈Q1 +Q3〉 (note that the coordinates are chosen in such a way that l(0, 0, 1) = l2).
Then in general l(u, v, w) intersects S := V (F ) in three points: Q1, Q3 and P (u, v, w), whose coordinates in
P3 immediately give the parametrization of S:











x = f1(u, v, w) = αw
y = f2(u, v, w) = −βw
z = f3(u, v, w) = −βv
t = f4(u, v, w) = αu

where
α = a9 uv + a8 uw + a6 v

2 + a4 vw + a3 w
2

β = a10 u
2 + a7 uv + a5 uw + a2 vw + a1 w

2 (6)

To obtain the parametric representation of the c.s. listed in thm. 1.8 it is enough to specialize (6). This
well–known construction is due to Clebsch (see for instance [C], I, Ch.II, 13).

Let f : P2
99K P3 be the rational map given by f(u, v, w) := (f1(u, v, w), . . . , f4(u, v, w)). Then

Im(f) = V (F ). If now we call I := (f1, . . . , f4) ⊆ R := k[u, v, w], it is well known that, for almost all
choices of the coefficients, V (I) consists of 6 points of P2 in general position, then a minimal free resolution
of R/I has the form

0 −→ R(−4)3
ψ
−→R(−3)4

φ
−→R −→ R/I −→ 0

where φ is the matrix ( f1 f2 f3 f4 ) and ψ is a 4 × 3 matrix of linear forms in u, v, w (see, for instance,
[G]). The matrix ψ can easily be computed starting from f1, . . . , f4, using linear algebra in K(a1, . . . , a10).

We briefly recall now how to use the above resolution to express a cubic form F of equation (5) as
a determinant of a 3 × 3 matrix. If (u, v, w) ∈ P2, then the point (x, y, z, t) = f(u, v, w) is on V (F ) and
therefore (x, y, z, t) · ψ = 0. This relation gives three bilinear equations in x, y, z, t and u, v, w, which can
also be viewed as linear equations in the variables u, v, w. Calling B the 3 × 3 associated matrix (of linear
forms in x, y, z, t), we have that the system has a non trivial solution if and only if det(B) = 0. Hence we
have proved that Im(f) ⊆ V (det(B)). Since V (F ) = Im(f), then det(B) is the equation of V (F ). (For more
details, see [G]).

This leads to construct the matrix B of the following proposition:
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Proposition 2.4. Let S := V (F ) be any cubic surface through l1, l2, l3, where F is given by (5). Then
F = det(B), where

B :=





a5x+ a8y + a9z + a10t a2x+ a4y + a6z + a7t a1x+ a3y
0 −y z
−x 0 t



 . (7)

Proof. A straightforward computation of the determinant of B. �

Remark 2.5. Note that the way used to construct the matrix B of Prop. 2.4 requires further hypothesis on
F : the c.s. V (F ) is initially given as the blow–up of the plane at six points in general position. Nevertheless,
det(B) gives exactly the form F without any other assumption but the requirement that V (F ) contains the
lines l1, l2, l3.

Specializing (6) and (7), we can explicitly describe those cubic surfaces considered in thm. 1.8 having
at least an L5 configuration of lines: we can write each of them either as a rational surface (giving only, for
simplicity, the polynomials α(u, v, w) and β(u, v, w) defined in (6)) and as a determinant of a 3 × 3 matrix,
possibly modifying the specialization of (7) by elementary rows and columns operations.

To express the cubic forms T1, . . . , T4 as rational surfaces, we can use either the fact that each of them
has a double point or the fact that each of their equations is linear in (at least) one variable. Moreover we
can find, by direct (or ad hoc) computations, three matrices which give, respectively, T2, T3, T4.

Hence we obtain the list in Table 1 (at the end of the paper), in which we have also added the coordinates
of the singular points of Ti, for i = 1, . . . , 13 (see also Figure 1) and the coordinates of the 6 points in P2,
center of the blow–up which gives Ti.

As far as the c.s. T1 : xy2 + yt2 + z3 = 0 is concerned, we prove the following fact:

Proposition 2.6. The polynomial

F (x, y, z, t) = xy2 + yt2 + z3

cannot be expressed as determinant of a 3 × 3 matrix whose entries are linear forms in x, y, z, t.

Proof. One way to follow could be to try the direct computation, i.e. to consider the 36 coefficients appearing
in a general 3 × 3 matrix A of linear forms and to study the ideal I generated by the 20 equations (in the
above 36 variables) obtained by imposing det(A) = F . One could compute a Gröbner basis G of I and verify
that G = {1}. Unfortunately this way seems to be unfeasible, since the computations involved are probably
too large for any computer algebra system available. Hence we have to use a slightly different strategy; by
“e.t.” we mean elementary transformations on the rows and columns of a matrix.

Since the monomial xy2 occurs in F , we can assume (up to e.t.) that the variable x appears with
coefficient one in A(1, 1) and, clearly, we can “delete” it (by e.t.’s) from all the other elements in the first
row and the first column of A; so that we start with the following matrix:

A :=





x+ b11y + c11z + d11t b12y + c12z + d12t b13y + c13z + d13t
b21y + c21z + d21t a22x+ b22y + c22z + d22t a23x+ b23y + c23z + d23t
b31y + c31z + d31t a32x+ b32y + c32z + d32t a33x+ b33y + c33z + d33t



 .

Two possibilities occur: either a22 = a23 = a32 = a33 = 0 and so we get the matrix

A1 :=





x+ b11y + c11z + d11t b12y + c12z + d12t b13y + c13z + d13t
b21y + c21z + d21t b22y + c22z + d22t b23y + c23z + d23t
b31y + c31z + d31t b32y + c32z + d32t b33y + c33z + d33t





or at least one of these coefficients is non zero. In this second case (up to suitable e.t.) we assume that
a22 = 1 and a23 = a32 = 0; if A(3, 3) 6= 0, then a monomial containing x2 arises in det(A), while x appears
in F only at degree one. Thus we get the matrix:

A2 :=





x+ b11y + c11z + d11t b12y + c12z + d12t b13y + c13z + d13t
b21y + c21z + d21t x+ b22y + c22z + d22t b23y + c23z + d23t
b31y + c31z + d31t b32y + c32z + d32t 0



 .
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Let us first consider the matrix A1: the monomial xy2 must arise from the x at the place (1, 1), so at least
two cross coefficients among b22, b23, b32, b33 are non–zero. As usual (up to e.t.) we can fix b22 = b33 = 1;
moreover, using the entries A1(2, 2) and A1(3, 3) and a suitable sequence of e.t.’s, we can delete the y’s in
all the remaining places, except (1, 1); so we get a matrix of the form:

A′
1 :=





x+ b11y + c11z + d11t c12z + d12t c13z + d13t
c21z + d21t y + c22z + d22t c23z + d23t
c31z + d31t c32z + d32t y + c33z + d33t



 .

Finally note that the only monomial of F containing y2 is xy2 and this implies b11 = c11 = d11 = 0 in A′
1

and so we obtain the matrix

A′′
1 :=





x c12z + d12t c13z + d13t
c21z + d21t y + c22z + d22t c23z + d23t
c31z + d31t c32z + d32t y + c33z + d33t



 .

Clearly, we have to require that

det

(

y + c22z + d22t c23z + d23t
c32z + d32t y + c33z + d33t

)

= y2

and the solutions of this equation (easy to compute), once substituted in A′′
1 , give rise to matrices whose

determinant cannot be F (x, y, z, t).
Consider now the matrix A2; the monomial xy2 can arise from both the entries (1, 1) and (2, 2); obviously,

using e.t.’s, we can assume that b23 and b32 are non–zero and, from this, that b12 = b22 = b21 = 0. In this
way we get the matrix:

A′
2 :=





x+ b11y + c11z + d11t c12z + d12t b13y + c13z + d13t
c21z + d21t x+ c22z + d22t b23y + c23z + d23t

b31y + c31z + d31t b32y + c32z + d32t 0



 .

Note also that b11 = 0 since the monomial y3 does not appear in F . Using b23 6= 0 we can delete b13 by a
rows transformation; in this way we introduce a monomial in x at A′

2(1, 2), but we can delete it by A′
2(1, 1).

Let us remark that, at the end of this sequence of e.t.’s, the coefficient of y at the place (3, 2) must be still
non–zero since the monomial xy2 appears in F . In the same way, from b32 6= 0 we can delete b31 and the
coefficient of y at the place (2, 3) must be still non–zero. Now, up to scaling the third row and the third
column, we get a matrix of the following type:

A′′
2 :=





x+ c11z + d11t c12z + d12t c13z + d13t
c21z + d21t x+ c22z + d22t y + c23z + d23t
c31z + d31t y + c32z + d32t 0



 .

Observing that in F the only monomial containing y2 is xy2, we immediately obtain c11 = d11 = 0 in A′′
2 ;

again, an easy computation shows that no values of the coefficients of A′′
2 give det(A′′

2 ) = F . �

Remark 2.7. Since it is easy to see that any cubic surface in class B can be expressed as the determinant
of a suitable matrix, from the previous results it follows that:
T1 is the only cubic form (up to projectivities) of K[x, y, z, t] that cannot be expressed as determinant of a
3 × 3 matrix of linear forms.

3. Study of T1, . . . , T13: stabilizers and orbits

So far we have seen a detailed study of the representatives of the orbits OT1
, . . . ,OT13

introduced in
theorem 1.8. We want now to study the orbits themselves. If S is a cubic surface, the dimension of the orbit
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OS depends on the dimension of the group of projective motions of S ⊂ P3 (which is indeed the subgroup of
PGL4 stabilizing S):

Stab(S) := {g ∈ PGL4 | g(S) = S}.

where g(S) denotes as usual the cubic surface S transformed by g. More precisely

dim(OS) = 15 − dim(Stab(S)).

Thus, in order to determine the dimensions of the orbits of T1, . . . , T13, we have to study the groups of
projective motions of each Ti.

Example. The cubic surface T7 contains only the five lines l1 = (y, z), l2 = (x, y), l3 = (x, t), l4 =
(x− t, y − z), m = (x, y − z) of L∗

7 and if A ∈ Stab(T7), then clearly A is in the stabilizer of L∗
7 and also in

the stabilizer of the set of the three singular points P1 := (0, 0, 0, 1), P2 := (0, 0, 1, 0), P3 := (0, 1, 1, 0) of T7

(see Figure 1 and Table 1).
We denote by Stab(L∗

7, sing) the subgroup of PGL4 consisting of the matrices which map L∗
7 and the singular

locus {P1, P2, P3} of T7 into themselves. It is easy to see that

Stab(L∗
7, sing) = H(7) ∪ g(7)

2 H(7)

where

H(7) :=

















d 0 0 0
0 c 0 0
0 c− b b 0
a 0 0 d− a






where a, b, c, d ∈ K, (a− d)bcd 6= 0











is the group fixing each line of L∗
7 (and therefore each Pi) and g

(7)
2 is a matrix which stabilizes m, exchanges

l1 with l4 and l2 with l3 (hence it exchanges the points P1 and P3, while mapping P2 into itself), e.g.:

g
(7)
2 :=







1 0 0 0
−1 0 0 1
−1 −1 1 1
1 1 0 0






.

As we already noticed before, Stab(T7) consists of the elements of H(7) ∪ g(7)
2 H(7) fixing the cubic surface

T7. Thus we look for the matrices A of Stab(L∗
7, sing) satisfying

T7






A







x
y
z
t












= λT7 , for a suitable λ ∈ K \ {0}.

Let us indicate the type of computation one has to perform: if A ∈ H(7), the above equality requires to solve
the system







bd2 − λ = 0
abc− bcd+ λ = 0
acd− cd2 + λ = 0

.

The case A ∈ g
(7)
2 H

(7)
1 is analogous. A direct computation gives that Stab(T7) is H

(7)
1 ∪g(7)

2 H
(7)
1 , where H

(7)
1

is the part of Stab(T7) entirely contained in H(7), and precisely:

H
(7)
1 =

















ab 0 0 0
0 b2 0 0
0 b(b− a) ab 0

a(b− a) 0 0 a2







∣

∣ a, b ∈ K, ab 6= 0











.
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In particular, we see that it is a 1-dimensional group, therefore OT7
is a subvariety of P19 of dimension 14.

As follows from the previous example, in order to compute the group Stab(Ti), it is useful to compute
first Stab(L∗

i , sing), defined as the group of matrices of PGL4 which map L∗
i to itself and the singular locus

Sing(Ti) to itself. Let us describe how to proceed in general.
We shall denote by H(i) the subgroup of PGL4 which stabilizes each line of L∗

i and each singular point of
Ti, i.e.

H(i) :=
⋂

l∈L∗

i

Stab(l) ∩
⋂

P∈Sing(Ti)

Stab(P ).

Note that (as one can see in Figure 1) for every Ti but T1 and T2 each point of Sing(Ti) is the intersection
of (at least) two lines of L∗

i , hence H(i) :=
⋂

l∈L∗

i

Stab(l), for every i = 3, . . . , 13.

Now consider the finite group K(i) of permutations π of the lines of L∗
i which preserve their incidence

relations and stabilize the singular locus of Ti. The peculiar configurations L∗
1, . . . , L

∗
13 allow us to realize

any permutation π as a matrix of PGL4, hence K(i) itself can be realized as a subgroup of PGL4. Therefore
Stab(L∗

i , sing) =
〈

H(i),K(i)
〉

⊆ PGL4. Moreover, one can infer from Figure 1 that the following properties
hold:
a) hk = kh, for any h ∈ H(i) and k ∈ K(i);
b) H(i) ∩K(i) = {1PGL4

},
hence it is straightforward to see that

Stab(L∗
i , sing) ∼= H(i) ×K(i).

Moreover, as one can see from Figure 1, the groups K(i) are isomorphic either to S2 or to S3 or to a product
of them. To underline the generators of the (factors of) the K(i) ⊆ PGL4 we use the following notation:

S2(g
(i)
2 ) will mean the order two subgroup of PGL4 generated by the matrix g

(i)
2 , while S3(g

(i)
2 , g

(i)
3 ) is the

order six subgroup of PGL4 generated by those two elements, such that
(

g
(i)
2

)2

= 1 and
(

g
(i)
3

)3

= 1.

Finally set

H
(i)
1 := {g ∈ H(i) : g(Ti) = Ti}.

We present here the list of Stab(L∗
i , sing) and Stab(Ti) obtained.

(If a matrix contains some parameters, it is understood that it indicates the group of all matrices having
that form, where the parameters vary in the field K in such a way that the matrix is non singular).

List of stabilizers

Surface T1:

Stab(L∗
1, sing) = H(1), Stab(T1) = H

(1)
1

where

H(1) :=







m11 m12 m13 m14

0 m22 m23 0
0 m32 m33 0
0 m42 m43 m44






H

(1)
1 :=







a6 −a4b2 0 −2a5b
0 c6 0 0
0 0 c4a2 0
0 c3a2b 0 c3a3







Surface T2:

Stab(L∗
2, sing) ∼= H(2), Stab(T2) = H

(2)
1

where

H(2) :=







m11 m12 0 0
0 m22 0 0
0 m32 m33 0
0 m42 m43 m44






H

(2)
1 :=







a4 0 0 0
0 b2a2 0 0
0 b2ac b3a 0
0 −b2c2 −2b3c b4






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Surface T3:

Stab(L∗
3, sing) ∼= H(3) × S3(g

(3)
2 , g

(3)
3 ), Stab(T3) ∼= H

(3)
1 × S3(g

(3)
2 , g

(3)
3 )

where:

H(3) :=







g a 0 0
0 b 0 0
0 c f 0
0 d 0 e






g
(3)
2 :=







0 −1 1 0
0 1 0 0
1 1 0 0
0 0 0 1






g
(3)
3 :=







0 −1 1 0
0 1 0 0
0 1 0 1
1 0 0 0







and

H
(3)
1 :=







ab2 0 0 0
0 ab (c+ a) 0 0
0 abc a2b 0
0 0 0 (c+ a)

3







Surface T4:

Stab(L∗
4, sing) ∼= H(4) × S3(g

(4)
2 , g

(4)
3 ), Stab(T4) ∼= H

(4)
1 × S2(g

(4)
2 )

where

H(4) :=







m11 m12 0 0
0 m22 0 0
0 m32 m11 0
m41 m42 m43 m44






g
(4)
2 :=







−1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1






g
(4)
3 :=







−1 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1







and H
(4)
1 = H

(4)
1,1 × S2(f

(4)
2 ), where

H
(4)
1,1 :=







a2 −ab 0 0
0 a2 0 0
0 0 a2 0

−2ab b(a+ b) ab a2






f

(4)
2 :=







−2 0 0 0
0 1 + i

√
3 0 0

0 3 + i
√

3 −2 0
6 − 2i

√
3 0 0 1 +

√
3







Surface T5:

Stab(L∗
5, sing) ∼= H(5), Stab(T5) = H

(5)
1

where

H(5) =







a 0 0 0
0 b 0 0
0 e c 0
f 0 0 d






H

(5)
1 =







a2b2 0 0 0
0 b4 0 0
0 0 ab3 0
0 0 0 a4







Surface T6:

Stab(L∗
6, sing) ∼= H(6), Stab(T6) = H

(6)
1

where

H(6) :=







a 0 0 0
0 b 0 0
0 c d 0
0 0 0 e






H

(6)
1 :=







a3 0 0 0
0 ab2 0 0
0 b2(b− a) b3 0
0 0 0 a2b







Surface T7:

Stab(L∗
7, sing) ∼= H(7) × S2(g

(7)
2 ), Stab(T7) ∼= H

(7)
1 × S2(g

(7)
2 )

where

H(7) :=







d 0 0 0
0 c 0 0
0 c− b b 0
a 0 0 d− a






H

(7)
1 :=







ab 0 0 0
0 b2 0 0
0 b(b− a) ab 0

a(b− a) 0 0 a2






g
(7)
2 :=







1 0 0 0
−1 0 0 1
−1 −1 1 1
1 1 0 0






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Surface T8:

Stab(L∗
8, sing) ∼= H(8) × S2(g

(8)
2 ), Stab(T8) ∼= H

(8)
1 × S2(g

(8)
2 )

where

H(8) :=







b+ c 0 0 0
0 a+ c 0 0
0 a c 0
b 0 0 c






g
(8)
2 :=







1 0 0 0
0 −1 0 0
−1 0 −1 1
0 0 0 1






H

(8)
1 :=







(a+ b)2 0 0 0
0 b(a+ b) 0 0
0 ab b2 0

a(a+ 2b) 0 0 b2







Surface T9:

Stab(L∗
9, sing) ∼= H(9) × S3(g

(9)
2 , g

(9)
3 ), Stab(T9) = S3(g

(9)
2 , g

(9)
3 )

where

H(9) :=







b 0 0 0
0 b 0 0
0 0 b 0

−a+ b 0 0 a






g
(9)
2 :=







−1 0 1 0
0 1 0 0
0 0 1 0
−2 0 1 1






g
(9)
3 :=







0 1 −1 0
0 1 0 0
1 1 −1 0
−1 1 −1 1







Surface T10:

Stab(L∗
10, sing) ∼= H(10) × S3(g

(10)
2 , g

(10)
3 ), Stab(T10) ∼= H

(10)
1 × S3(g

(10)
2 , g

(10)
3 )

where

H(10) :=







b 0 0 0
0 c 0 0
0 c− b b 0

b− a 0 0 a






H

(10)
1 :=







a2b 0 0 0
0 a3 0 0
0 a2(a− b) a2b 0

b(a2 − b2) 0 0 b3







g
(10)
2 :=







−1 −1 1 0
0 1 0 0
0 0 1 0
−2 −1 1 1






g
(10)
3 :=







0 −1 1 0
0 −1 0 0
−1 −2 1 0
1 −1 1 −1







Surface T11:

Stab(L∗
11, sing) ∼= H(11) × S2(g

(11)
2 ), Stab(T11) = {Id, h(11)

1 , h
(11)
2 , h

(11)
3 } =

〈

h
(11)
2

〉

where

H(11) :=







a 0 0 0
0 a 0 0
0 b− a b 0

a− b 0 0 b






g
(11)
2 :=







1 0 0 0
1 −1 0 0
0 0 −1 −1
0 0 0 1







h
(11)
1 :=







1 0 0 0
0 1 0 0
0 −2 −1 0
2 0 0 −1






h

(11)
2 :=







1 0 0 0
1 −1 0 0

−1 + i 1 − i −i −i
1 − i 0 0 i






h

(11)
3 :=







1 0 0 0
1 −1 0 0

−1 − i 1 + i i i
1 + i 0 0 −i







Surface T12:

Stab(L∗
12, sing) ∼= H(12) × S2(g

(12)
2 ), Stab(T12) = S2(g

(12)
2 )
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where

H(12) :=







b 0 0 0
0 a 0 0
0 −b+ a b 0
0 0 0 b






g
(12)
2 :=







0 1 −1 0
0 1 0 0
−1 1 0 0
−1 1 −1 1







Surface T13(p, q):

Stab(L13
∗, sing) ∼= H(13) × S3(g

(13)
2 , g

(13)
3 ) × S2(f

(13)
2 )

where the above matrices are defined as follows: let

L13
∗ = [l1 = (y, z), l2 = (x, y), l3 = (x, t), l4 = (x− t, y − z),

m5 = (y, x− z), m6 = (x, y − z), m7 = (x− t, y − z + t)]
.

Then g
(13)
2 permutes l4 with m7 and l1 with m5, g

(13)
3 induces the cycles l4 → m7 → l3 → l4 and l1 → m5 →

l2 → l1 and f
(13)
2 permutes the lines as follows: l1 ↔ l4, m5 ↔ m7, l2 ↔ l3; note that each of this matrices

either fix or permutes the two singular points of T13. With the computations described at the beginning of
this section, we obtain:

H(13) :=







b 0 0 0
0 a 0 0
0 a− b b 0

b− c 0 0 c







g
(13)
2 :=







−1 −1 1 0
0 1 0 0
0 0 1 0
0 −1 1 −1






, g

(13)
3 :=







0 −1 1 0
0 2 0 0
−1 1 1 0
−1 −1 1 1






, f

(13)
2 :=







1 0 0 0
−1 0 0 1
−1 −1 1 1
1 1 0 0






.

The computation of Stab(T13(p, q)) is more complicated (indeed it depends on the parameters p and q) and
it will be described at the end of Section 5. We anticipate that, for every p and q, it is a one–dimensional
subgroup of PGL4.

Therefore we have proved the following

Theorem 3.1. The orbits of the c.ss. T1, . . . , T13 have the following dimensions:

dim(OT1
) = dim(OT2

) = dim(OT3
) = 13

dim(OT9
) = dim(OT11

) = dim(OT12
) = 15

and the remaining ones have dimension 14. �

4. Smooth cubic surfaces: computation of the 27 lines and action of E6

Let us now consider the generic cubic surface S through the fixed L∗-set, i.e. belonging to P4:

a(2x2y−2xy2+xz2−xzt−yt2+yzt)+ b(x−t)(xz+yt)+c(z+t)(yt−xz)+d(y−z)(xz+yt)+g(x−y)(yt−xz) = 0.
(2)

Specializing (6) we obtain a parametric equation of S:























x =
(

(a+ c− d)uv + (d− g)uw + (d+ g)vw + (a− c− d)v2 − 2aw2
)

w

y =
(

(a+ b− c)u2 + (a+ b+ c)uv − (b + g)uw − (b − g)vw − 2aw2
)

w

z =
(

(a+ b− c)u2 + (a+ b+ c)uv − (b + g)uw − (b − g)vw − 2aw2
)

v

t =
(

(a+ c− d)uv + (d− g)uw + (d+ g)vw + (a− c− d)v2 − 2aw2
)

u
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and from 2.4 (and suitable elementary transformations on rows and columns) we obtain its cartesian equation
(2) as the determinant of the matrix





a(z − t) + b(x− t) + d(y − z) g(y − x) − c(z + t) a(y − x)
y y z
x −x t



 .

In this section we shall study smooth cubic surfaces which, as we noted in Section 1, can be parametrized
by the open set P4 \ Σ = φ(P4 \ Σ). In the sequel we denote P4 \ Σ by U .

We want to determine the 27 lines on S ∈ U . Let us try to apply Algorithm 2.3 starting from the lines
l1 and l2 of the L∗-set.
Consider the planes passing through l1. To find the five reducible residual conics it is useful to completely
factorize the degree 5 polynomial Dl1(p, q). The pencil of planes containing l1 is:

πl1(p, q) : py + qz = 0.

The discriminant of the residual conic Cl1(p, q) is:

Dl1(p, q) := q(p+ q)(cp2 + gpq + aq2)(λp+ µq)

where
λ := (2a+ b− d)(a− c− d); µ := −2a(a+ b− c) − (b + d)(g − d)

The crucial remark is that the factor of degree 2 ofDl1 does not factorize with the initial choice of parameters;
nevertheless as soon as we introduce the relations

g = e+ f and ac = ef

we obtain:
c(cp2 + gpq + aq2) = (cp− fq)(cp− eq).

In this way, up to a factor c which can be assumed non zero (since if c = 0 then S is singular, as follows
from the equation of Σ in 1.4), we get

Dl1(p, q) = q(p+ q)(cp− fq)(cp− eq)(λp+ µq)

and in addition the discriminants corresponding to l2 and s := res (l1, l2) split into linear factors. This enables
us to completely apply Algorithm 2.3 and compute the 27 lines of S, whose grassmannian coordinates in
G(1, 3) ⊂ P5 can be found in Table 2, at the end of the paper.

Remark 4.1. The above change of parameters corresponds to the following map: consider the projec-
tive space P4, with coordinates (a, b, c, d, g), parametrizing the family (2), the projective space P5, with
coordinates (a, b, c, d, e, f) and the quadric V ⊂ P5 of equation ac = ef . The map

ψ : P5 ⊃ V −→ P4 defined by (a, b, c, d, e, f) 7→ (a, b, c, d, e+ f)

is a two–to–one covering of P4 (in fact it is simply the projection of V from the point (0, 0, 0, 0, 1,−1) ∈ P5\V
onto the hyperplane f = 0). Obviously, two distinct points P = (a, b, c, d, e, f) and P ′ = (a′, b′, c′, d′, e′, f ′)
of V represent the same cubic surface (i.e. have the same image on P4, via ψ) if and only if their coordinates
fulfill a = a′, b = b′, c = c′, d = d′, e = f ′, f = e′ (up to a non zero factor).

In this way, the quadric V introduced above, still parametrizes the c.ss. through L∗; their equation
(immediately obtained from (2)) is then:

a(2x2y − 2xy2 + xz2 − xzt− yt2 + yzt) + b(x− t)(xz + yt)+

+ c(z + t)(yt− xz) + d(y − z)(xz + yt) + (e+ f)(x− y)(yt− xz) = 0
(2′)
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where (a, b, c, d, e, f) ∈ P5 and fulfills the relation: ac = ef .

By Vscs we shall denote the open subset of the quadric V parametrizing the smooth cubic surfaces
containing L∗. So Vscs = ψ−1(P4 \ Σ) = ψ−1(U); in particular, any c.s. of U is represented by two points of
Vscs.
Clearly, we can lift in P5 the equation σ = 0, which defines Σ (see 1.4) and obtain the equation of V \ Vscs.

Finally note that the singular locus of V , given by a = c = e = f = 0, corresponds to a component of
R (see 1.6). Hence, in particular, Vscs is smooth.

An immediate consequence of the above construction is the possibility of obtaining all the (smooth)
cubic surfaces having all the lines with coefficients in the rational field Q ⊂ K. If (a, b, c, d, e, f) ∈ P5(Q) is
a point of Vscs, the corresponding cubic surface S given by (2′) has all the lines with rational coefficients, as
clearly follows from the explicit computation of the lines given in Table 2. Moving each of the cubic surfaces
obtained in this way with the matrices with rational entries, we describe all the cubic surfaces whose lines
are rational.

Conversely, given an explicit cubic surface S, it is possible to detect if its lines are all rational: one way
is to compute the sub-variety H ⊆ G(1, 3) (where G(1, 3) denotes the Grassmannian of the lines of P3) given
by the lines contained in S. The computations of the primary decomposition of the ideal defining H with
one of the known techniques (see for instance [GTZ], [EHV] and the references given there), allows us to
determine the points of H . A line of S is rational iff it is given by a point of H that can be expressed with
rational coordinates.

The computation of the variety H is straightforward: if F (x, y, z, t) = 0 is the equation of S and if
(p1, . . . , p6) denotes a point of G(1, 3) (hence satisfying the condition p1p6 − p2p5 + p3p4 = 0), then four
points in P3 of the line (p1, . . . , p6) are: P1 := (0, p1, p2, p3), P2 := (−p1, 0, p4, p5), P3 := (−p2,−p4, 0, p6),
P4 := (−p3,−p5,−p6, 0), so an ideal defining H is: (F (P1), . . . , F (P4), p1p6 − p2p5 + p3p4).

Remark 4.2. It is well–known that the generic smooth cubic surface has trivial stabilizer (see for instance
[S], Ch. XIV). This fact can also be obtained from the computation sketched at the beginning of this section;
indeed it is enough to show that a specific smooth c.s. has this property. One way to see this might be
the following: take a specific smooth c.s. S having only rational lines; compute its lines and all the L-sets
Li (i = 1, . . . , 25, 920) of S. Then move S with all the matrices Ai which map L∗ to Li and verify that
Ai(S) 6= S, for all i = 1, . . . , 25, 920 (this computation can be done in a reasonable amount of time with the
help of a computer algebra system).

The results obtained so far, allow us to conclude this section with the proof of Theorem 1.10.

We denote by L the set {E1, . . . , E6, G1, . . . , G6, F12, . . . , F56} of the 27 lines of a smooth cubic surface.
Keeping into account the following intersection rule:

Ei ∩ Ej = ∅ for i 6= j; Ei ∩ Fkl = ∅ ⇔ i 6= k, l

Gi ∩Gj = ∅ for i 6= j; Gi ∩ Fkl = ∅ ⇔ i 6= k, l

Ei ∩Gj = ∅ ⇔ i = j; Fij ∩ Fkl = ∅ ⇔ {i, j} ∩ {k, l} 6= ∅

following the notation introduced, for instance, in [H] (Ch. V, 4), it is easy to see that, given S ∈ U and
calling the five lines of L∗, respectively, E1, G4, E2, G3, E3, then many other lines of S have consequentely
a precise name: for instance res (E1, G4) must be F14, res (E3, G4) = F34, etc. It is clear that all the lines
of the set {Ei, Gj , Fkl | i, j, k, l ∈ I4, k < l} ∪ {F56}, where I4 := {1, 2, 3, 4}, are determinated in this way,
while a line of L having an index 5 cannot be distinguished from the line having 6 as corresponding index:
e.g. E5 and E6 have the same incidence relations with all the lines of L∗.
Hence we call E5 one of the two lines meeting G3, G4 and different from E1, E2, F34, so E6 is the other one;
all the other labels of the lines of S come consequently.
We can describe this fact as follows: let us take all the lines r in P3 meeting l2 and l4, but different from l1
and l3 and skew with l5, i.e.

H := {r ∈ G(1, 3) | r ∩ l2 6= ∅ 6= r ∩ l4; r ∩ l1 = r ∩ l3 = r ∩ l5 = ∅}
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and consider the following correspondence:

U ×H ⊃ W = {(S, r) | r ⊂ S}.

Since on a cubic surface S ∈ U there are exactly two lines (but l1, l3, res (l2, l5)) meeting l2 and l4, it is clear
that the projection π : W → U is a finite map of degree 2. Hence we get:

Remark 4.3. An element w := (S, r) ∈ W induces a label on each of the 27 lines of S since they can be
obtained from the set of lines L∗ ∪ {r} by residuality. Therefore it is defined a one–to–one correspondence
φ : L → {27 lines of S} such that φ(E5) = r. The line φ(l), where l ∈ L, will be denoted by lw; hence, from
now on, L will be regarded as a set of indeces for the lines of (S, r).

Remark 4.4. Note that, if S := S(a, b, c, d, e, f) ∈ Vscs, setting (E1, G4, E2, G3, E3) the lines of the L-set
L∗ defined in (1) and E5 is choosen as in Table 2, then all the names of the other lines of S appearing in
Table 2 come consequentely.

Let E6 be the group of the permutations on the 27 lines on a smooth c.s. of the set L preserving the
incidence relations. An easy computation shows that |E6| = 51, 840 (for further details see, for instance, [H],
Ch. V, 4.10.1).

One of the purposes of this section is to define a group action of E6 on W .

Notation. If g ∈ E6 and l ∈ L, we denote by g(l) the corresponding element of L obtained via the
permutation g. Moreover, if lw ⊂ S, where w := (S, r) ∈ W , then g(lw) denotes the line of S corresponding
to the index g(l) ∈ L, i.e. g(lw) := (g(l))

w
. In this way the group E6 can be regarded either as an abstract

group of permutations or as the group of permutations of the lines of S.

Note that any g ∈ E6 preserves the incidence relations of the lines of a cubic surface S; in particular, if
L is an L-set of S, then also g(L) is an L-set of S. Moreover, since res S(l,m) is the unique line of S meeting
both l and m, then:

g(res S(l,m)) = res S(g(l), g(m)). (8)

Definition. Let w := (S, r) ∈ W ; for any g ∈ E6 let Ag (or (w)Ag, if necessary) be the unique (by 1.2)
matrix in PGL4 such that:

A−1
g (g(l)) = l, for all l ∈ L∗.

(Clearly l means lw).

Remark 4.5. If w := (S, r) ∈ W , from the definition of A−1
g one immediately obtains that, for any l ∈ L,

the lines lw and A−1
g (g(lw)) have the same incidence relations with the lines of L∗; e.g. if lw ∩ l1 = ∅, then

∅ = A−1
g (g(lw)) ∩A−1

g (g(l1)) = A−1
g (g(lw)) ∩ l1, etc.

Proposition 4.6. Let g ∈ E6 and w := (S, r) ∈ W ; set w′ :=
(

A−1
g (S), A−1

g (g(r))
)

. Then w′ ∈ W and
moreover it holds:

lw
′

= A−1
g (g(lw)) for all l ∈ L. (9)

Proof. Clearly S′ := A−1
g (S) still contains L∗, since S ⊃ g(L∗), so A−1

g (S) ⊃ A−1
g (g(L∗)) = L∗. Moreover

the line r′ := A−1
g (g(r)) of S′ has the required incidence relations with the lines of L∗ from 4.5. Therefore

(S′, r′) ∈ U ×H.
Let us show the equality (9): it clearly holds for any l ∈ L∗ and also for r, since r = Ew

5 and r′ =
A−1

g (g(Ew
5 )) = Ew′

5 . Moreover all the lines of S can be obtained from L∗ and Ew
5 by residuality (see 4.3).

Therefore, taking into account that

A−1
g (res S(lw,mw)) = res S′(A−1

g (lw), A−1
g (mw)). (10)

it is enough to show that if lw and mw verify the equality of (9), then also nw := res S(lw,mw) verifies it.
Using (8) and (10), we obtain:

A−1
g (g(nw)) = A−1

g (g(res S(lw,mw))) = A−1
g (res S(g(lw), g(mw))) =

= res S′(A−1
g (g(lw)), A−1

g (g(mw))) = res S′(lw
′

,mw′

) = nw′

. �
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Lemma 4.7. Let g, h ∈ E6, w := (S, r) ∈ W and w′ :=
(

A−1
g (S), A−1

g (g(r))
)

. Then:

(w)A−1
gh = (w′)A−1

h ◦ (w)A−1
g .

Proof. To see the above equality, it is enough to show (by 1.2) that (w)A−1
gh and (w′)A−1

h ◦ (w)A−1
g coincide

on an L-set of S, e.g. on the specific one gh(L∗).

Set w′′ :=
(

A−1
gh (S), A−1

gh (gh(r))
)

; from the definition of A−1
gh , we have that

(w)A−1
gh (gh(lw)) = lw

′′

, for every l ∈ L∗.

where, for l ∈ L∗, l = lw
′′

= lw
′

= lw since L∗ is a set of fixed lines.
On the other hand, we immediately obtain:

(w′)A−1
h

(

(w)A−1
g (gh(lw))

)

= (w′)A−1
h

(

h(lw
′

)
)

= lw
′

, for every l ∈ L∗

where the first equality follows from 4.6 and the second one from the definition of (w′)A−1
h ; therefore the

claim is proved. �

Finally, we can prove the following:

Theorem 4.8. The map
α : E6 ×W −→ W

defined by

(g, w) 7→ g(w) :=
(

(w)A−1
g (S), (w)A−1

g (g(r))
)

(where w = (S, r)) is an action of the group E6 on the variety W .

Proof. Clearly, g(w) ∈ W from 4.6; moreover, from 4.7 it immediately follows that α(gh, w) = α(h, α(g, w)),
so α is a group action. One can also prove that it is a regular map. �

Let us describe how the above action is related to the action of PGL4 on U ⊂ P19.

Lemma 4.9. Let S1, S2 ∈ U be two projectively equivalent cubic surfaces. Then, for every w1 ∈ π−1(S1)
and w2 ∈ π−1(S2) (where π : W → U is the projection), the elements w1 and w2 belong to the same orbit
of W under the action of E6.

Proof. Assume that S2 = BS1, where B ∈ PGL4. Let w1 := (S1, r1) and w2 := (S2, r2). Clearly
{B−1(lw2) | l ∈ L} is a permutation of the lines of (S1, r1), hence there exists g ∈ E6 such that

g(lw1) = B−1(lw2), for all l ∈ L.

In particular, (w1)A−1
g = B by definition.

Therefore g(w1) = (B(S1), B(g(r1))) = (S2, r2) = w2 and this concludes the proof. �

Proposition 4.10. Let OE6

(S,r) be the orbit of (S, r) ∈ W under the action α and let OPGL4

S be the orbit of

S ∈ U under the action of PGL4 on P19. Then

π
(

OE6

(S,r)

)

= OPGL4

S ∩ U.

Proof. Let (S′, r′) ∈ OE6

(S,r); then there exists g ∈ E6 such that S′ = (w)A−1
g (S), where w := (S, r); therefore

π(S, r) = S and π(S′, r′) = S′ are projectively equivalent.
The other inclusion comes immediately from 4.9. �

From 4.9, taking S1 = S2 and B = Id, it follows that the fiber π−1(S) consists of two elements
{(S, r), (S, r′)} which are in the same orbit. Hence there exists an element σ ∈ E6 such that (S, r′) = σ(S, r).
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It is easy to see that σ is the order 2 permutation which exchanges the indeces 5 and 6 of the elements of L,
i.e. σ(E5) = E6, σ(G5) = G6, etc. In particular, σ(L∗) = L∗.

We can now define an action of E6 also on U .
Let S ∈ U and g ∈ E6; by g(π−1(S)) we mean the set {g(S, r), g(S, r′)} = {g(S, r), gσ(S, r)}. These two
elements have the same image via π i.e.

(w)A−1
g (S) = (w)A−1

gσ (S)

(where w := (S, r)) since gσ(L∗) = g(L∗) implies that (w)A−1
gσ = (w)A−1

g .

Proposition 4.11. The map
β : E6 × U −→ U

defined by
(g, S) 7→ g(S) := π(g(π−1(S)))

is an action of E6 on U . Moreover π
(

OE6

(S,r)

)

= OE6

S , for all (S, r) ∈ W .

Proof. The map β is well–defined since π(g(S, r)) = π(gσ(S, r)) as remarked before; moreover it is a group
action since

h(g(S)) = π(h(π−1(π(g(π−1(S)))))) = π(h(g(π−1(S)))) = π((gh)(π−1(S))) = (gh)(S)

where the third equality comes from the fact that the map α defined in 4.8 is an action. �

Note that, since g(S) = A−1
g = A−1

gσ = gσ(S), the action β is not faithful.
To avoid this, let G be the index two subgroup of E6 (see [H], Ch. V, 4). It is easy to see that σ 6∈ G and
therefore g ∈ G if and only if gσ 6∈ G. Let

γ : G× U −→ U

be the restriction of the action β defined above. Finally, note that g(S) = gσ(S) implies that OE6

S = OG
S for

all S ∈ U , hence from 4.10 and 4.11 it follows that

OG
S = OPGL4

S ∩ U

and clearly γ acts faithfully on the open subset of U consisting of the cubic surfaces having trivial stabilizer
(in PGL4).

Then we obtain that every smooth c.s. of P3 can be represented, up to a projectivity, by a unique
element of the quotient M := U/G. Moreover, M has the structure of quasi–projective algebraic variety
since it is a quotient of a quasi–projective algebraic variety by a finite group (see [Ha], Ch. 10).

This concludes the proof of Theorem 1.10.

5. Proofs of the theorems (I)

In this final section we collect the proofs of all the results stated in Section 1, but Theorem 1.9.

Proof of theorem 1.1. It suffices to show the following:

5.1. Let S be an irreducible cubic surface having infinitely many lines and assume that S is not a cone.
Then S has a double line.

From 2.2 there exists a plane σ meeting S in a plane cubic curve Γ which is union of three lines (not necessarily
distinct). Since any line of S meets σ, there exists a line, say r, among these three meeting infinitely many
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lines of S. Note that, since S is irreducible and not a cone, there exist infinitely many mutually skew lines
meeting r; let m1,m2,m3 be three of them. We may assume that, up to a projectivity,

r = (x, y); m1 = (y, z); m2 = (x, t); m3 = (x − y, z + t).

Moreover, again from 2.2 we conclude that the discriminant Dr(p, q) of the residual conic Cr(p, q) on the
plane πr(p, q) : px + qy = 0 must be zero for all p’s and q’s. From the explicit computation (of the type
explained below) of Dr(p, q), the obtained conditions force S to be either reducible or a c.s. with a double
line. �

Now we are going to prove theorems 1.8 and 1.3, 1.4, 1.5, 1.6.
We want to describe the equations (up to a linear change of coordinates) of the cubic surfaces that do not
contain an L-set. To this end, we first prove that any c.s. contains at least one line and then we proceed in
this way: we consider the following 5 configurations of lines

Figure 2

Note that each of these configurations is contained in the next one, that M5 is an L-set and each of them
can be fixed, if necessary, up to a projectivity by 1.2. We find the c.ss. that contain a configuration of lines
Mi but do not contain a configuration Mi+1 (for i = 1, . . . , 4). Since, as we will see, any c.s. contains at
least a configuration of type M1, the union of all the cubic surfaces obtained in this way is the totality of
c.ss. not passing through an L-set.

In order to determine these surfaces, we use the following strategy:

Step 1 Let us call Si the linear system of all the c.ss. through a fixed set of lines Mi (and satisfying, if
necessary, some other conditions that can still be fixed up to a projectivity).

Step 2 We analyze some necessary conditions on the parameters of Si, imposed by the fact that there are
no other lines on Si extending the fixed Mi to a configuration of type Mi+1. In this way we obtain
sets of equations on the parameters of Si.

Step 3 We determine all the solutions of the equations obtained in Step 2. Call Xi the set of these
solutions.

Step 4 We substitute each solution of Xi into the parameters of Si and we study the families of surfaces
obtained in this way. We usually find that for some elements of Xi the corresponding c.ss. are
either reducible or cones or ruled surfaces; hence by 1.1 the remaining families of c.ss. (if they
exist) contain a finite number of lines. We study their configurations of lines and collect those

families of c.ss. which do not contain any Mi+1; we denote them by S(1)
i ,S(2)

i , . . . etc.

Step 5 We analyze the families S(j)
i obtained in Step 4 and we select specific c.ss. such that all their orbits

cover the above families.

The tools needed in the above steps are essentially as follows:
- an algorithm for factorizing multivariate polynomials (over the field of rational numbers);
- Algorithm 2.3 to study the configuration of lines on the irreducible cubic surfaces obtained;
- a method for finding the solutions of Step 3 above, which is based on the fact that, every time we have to

perform this step, at least one equation either factorizes or is linear in one variable. In this second case,
the substitution of such a variable in the remaining equations gives rise to polynomials which factorize
into polynomials, linear in some other variables. This procedure can be repeated until the complete
resolution of the initial equations.

The above steps are repeated for i = 1, . . . , 4. Here we summarize the results obtained after Step 4:
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i) The cubic surfaces containing a system of lines M1 but not M2 are given by: S(1)
1 ,S(2)

1 ;

ii) The cubic surfaces containing a system of lines M2 but not M3 are given by: S(1)
2 ,S(2)

2 ,S(3)
2 ;

iii) The cubic surfaces containing a system of lines M3 but not M4 are given by: S(1)
3 , . . . ,S(6)

3 ;

iv) The cubic surfaces containing a system of lines M4 but not M5 are given by: S(1)
4 , . . . ,S(11)

4 .

(The explicit equations of the families S(i)
j ’s are written below).

Then we give some examples and the outline of the procedure followed through Step 5, to obtain the list of
the c.ss. T1, . . . , T13.

Finally, we study c.ss. containing an L-set, distinguishing the singular and the reducible ones.

Notation. If S is an irreducible c.s., then there exists a non-singular point P ∈ S; let TP (S) denote the
tangent plane to S at the point P and CP = TP (S) ∩ S be the corresponding plane cubic curve, necessarily
singular at P .

Before going on with the steps listed above, we need the following result:

A. Every cubic surface contains a line.

Here we give a self–contained proof of this well–known fact, using a method which is a suitable modifi-
cation of [R1], Ch. 7, and that also gives an algorithm for an easy computation of the lines on a c.s. with
numerical approximation.

5.2. If a cubic surface S does not contain an infinite number of lines, then it contains either a plane nodal
curve or a plane cuspidal curve.

Clearly, the surface S is irreducible, then there exists a non-singular point P ∈ S. Three possibilities occur:
either CP is reducible (hence CP ⊂ S contains a line) or CP is irreducible and has a node at P or CP is
irreducible and has a cusp at P . Hence, if S does not contain any plane nodal or cuspidal curve, then for any
non-singular point P ∈ S, there exists a line lP such that P ∈ lP ⊂ S, i.e. S is a ruled surface; in particular,
it contains infinitely many lines. �

5.3. All plane nodal curves are projectively equivalent.

(see for instance [Ha], Ch.10).

5.4. If an irreducible cubic surface S contains a plane nodal curve then, up to a projectivity, it has equation:

a(x3 − x2z + y2z) + bx2t+ cxyt+ dy2t+ exzt+ fyzt+ gxt2 + hyt2 − izt(z + t) = 0. (11)

By 5.3, we may assume that S passes through the fixed plane cubic curve Γ = V (t, y2z − x2(z − x)) and
(as in the proof of 5.2) that S is smooth at (0, 0, 1, 0) (the node of Γ). Take now a line l through (0, 0, 1, 0)
and not contained in the plane π : t = 0; hence l intersects S in two other distinct points A and B; it is
easy to see that there exists a unique projectivity F ∈ PGL4 extending the identity on π and such that
F (A) = (0, 0, 0, 1), F (B) = (0, 0, 1, 1). So we may assume that, up to a linear change of coordinates, S
contains the plane cubic curve Γ and passes through the points (0, 0, 0, 1) and (0, 0, 1, 1); imposing these
conditions on S we can see, by a direct computation, that S has equation (11).

5.5. Let S be an irreducible c.s. of the above family; then S contains at least one line.

Note that in equation (11) we can assume a 6= 0 (otherwise the corresponding polynomial has t as a factor).
Consider the following parametrization of the curve Γ in 5.4: φ : P1 −→ Γ ⊆ S defined by:

φ(u, v) := (4uv(v − u), 4uv(v + u), (u− v)3, 0)

Note that φ(0, 1) = φ(1, 0) = (0, 0, 1, 0) is the node of Γ.
To characterize the points X = (u, v) ∈ P1 such that through P := φ(X) ∈ S passes a line of S, consider
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the plane cubic curve CP = S ∩ TP (S). Using (11) we can explicitly compute TP (S), where P = P (u, v),
obtaining the coefficients of the equation:

TP (S) : α(u, v)x+ β(u, v)y + γ(u, v)z + δ(u, v)t = 0

where γ(u, v) = au3v3 6= 0; in particular, this implies that S is smooth at each point P ∈ Γ. Thus a
straightforward computation yields the equation of CP .
After the change of coordinates in the plane TP (S):







x = X + (v − u)Z
y = −X + (v + u)Z
t = 2vY

the point P becomes (0, 0, 1). Let us call again (x, y, z) the new coordinates in TP (S) instead of (X,Y, Z);
hence CP has an equation of the form:

CP : f3(x, y) + f2(x, y)z = 0

where

f3 = e11y
3 + uve12xy

2 + u2v2e13x
2y + u3v3e14x

3, f2 = g11y
2 + uvg12xy + u2v2g13x

2.

and e11, e12, e13, g11, g12 are suitable polynomials in u and v not divisible either by u and by v, while e14 and
g13 are easier to write and are precisely e14 = u3 and g13 = v3 − u3.
Clearly, the plane cubic CP splits into a line and a conic if and only if f3 and f2 have a common factor, i.e.
if and only if Res(f2, f3) = 0, where Res(f2, f3) (the resultant of f2 and f3) is a polynomial in a, . . . , i, u, v,
homogeneous in u and v.
The explicit computation of it gives:

Res(f2, f3) = u9v9H(u, v) where H(u, v) = i6v27 + · · · − i6u27.

Note that here we write only the coefficients of u27 and v27 (the entire polynomial is quite big and almost
impossible to be obtained without the aid of a computer) but they are enough to show that H(u, v) has a
root different from (1, 0), (0, 1), (0, 0) and has degree at most 27. Namely i 6= 0, since the computation of
the jacobian of the cubic surfaces of (11) with i = 0 gives that the point (0, 0, 1, 0) is singular, against our
assumption. �

This shows A. in the case that the surfaces contain a plane nodal curve. In the case of a cuspidal plane
curve, we can proceed essentially in the same way.

Remark 5.6. 1) A slight modification of the above proof is enough to show that almost all cubic surfaces
contain 27 lines: one has essentially to show that if through a point of Γ pass two lines, then H(u, v) has a
double root.
2) The above proof suggests an algorithm for the numerical computation of the lines on a given cubic surface
S; one can follow this procedure: take first a point on S, compute the tangent plane to S through that point
and finally intersect this plane with S. In general we get a plane nodal curve Γ, which can be parametrized
by a map φ : P1 −→ Γ. Following the argument of the above proof, we see that the lines on S correspond to
the zero of a homogeneous polynomial in the two variables u, v, which are quite easy to find with numerical
methods.

Now we can start with the first four Steps described at the beginning of this section.

B. Study of the cubic surfaces containing a configuration M1 but not a configuration M2.

We follow the steps and the notations introduced at the beginning of the section. Fix M1 := {l1}, where
l1 = (y, z). Then the linear space S1 of all c.ss. passing through M1 is given by (0) with the conditions

a11 = a12 = a13 = a20 = 0.
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We are looking for the conditions on the coefficients ai’s that avoid the extension of M1 to a configuration
of type M2. From lemma 2.2 (using the notation introduced in 2.1, i.e. πl1(p, q) denotes the pencil of
planes py + qz = 0) we know that the discriminant Dl1(p, q) cannot be identically zero and therefore it is a
homogeneous polynomial in p, q of degree 5, so are defined at least one and at most five planes in P3. Up to
a projectivity, we assume that the plane y = 0 is one of them, i.e. we assume that (p, q) = (1, 0) is a solution
of Dl1 . Moreover, the intersection of the plane y = 0 with any surface of S1 must be l31, since we require
that there are no lines meeting l1. Hence the coefficients of S1 have to satisfy:

a2 = a6 = a7 = a18 = a19 = 0.

Again we call S1 the subfamily of (0) fulfilling all these conditions:

S1 : a1 x
2y + a3 xy

2 + a4 xyz + a5 xyt+ a8 y
2t+ a9 yzt+ a10 yt

2 + a14 y
3 + a15 y

2z + a16 yz
2 + a17 z

3 = 0.

Suppose now that there is another solution of Dl1 different from (1, 0). Up to projectivity, we can assume
that it is given by (p, q) = (0, 1), i.e. by the plane z = 0. Again it must happen that {z = 0} ∩ S = l31 for
every S ∈ S1. Hence the parameters of S1 have to satisfy:

a1 = a3 = a5 = a8 = a10 = 0.

However, using Algorithm 2.3, we infer that such S’ have infinitely many lines. Therefore we are forced to
consider the other possibility: all the 5 planes defined by Dl1 coincide with y = 0. The computation of the
discriminants Dl1(p, q) for S1 give:

Dl1(p, q) = q2
(

α3p
3 + α2p

2q + α1pq
2 + α0q

3
)

where
α0 = a5

2a14 − a3a5a8 + a1a8
2 + a3

2a10 − 4a1a14a10

α1 = a3a5a9 − 2a1a8a9 + 4a1a15a10 − 2a4a3a10 + a4a5a8 − a5
2a15

α2 = a1a9
2 − a4a5a9 − 4a1a16a10 + a4

2a10 + a5
2a16

α3 = a17

(

4a10a1 − a5
2
)

and this polynomial has the only solution (p, q) = (1, 0) if and only if α3 = α2 = α1 = 0. In order to simplify
the resolution to these equations, we first note that a17 = 0 implies the reducibility of the surfaces of S1

(indeed a17 = 0 implies that the plane y = 0 is a component of any element of S1). Then, from α3 = 0 we
get that either a1 = a5 = 0 or a10 = a2

5/(4a1). From the first condition, it is straightforward to find the
solutions. The second one, substituted in the first three equations, gives a system that can easily be solved
as soon as one factorizes over Q the involved polynomials. All the solutions obtained are then:

X1 :=

{

[a1 = 0, a5 = 0, a10 = 0], [a1 = 0, a4 = 0, a5 = 0],

[

a10 =
a2
5

4 a1
, a9 =

a4 a5

2 a1

]}

.

(In this last one, a1 is assumed 6= 0).
Now, as exposed in Step 4, we substitute each element of X1 into the parameters of S1 and we analyze the
surfaces obtained:

a3 xy
2 + a4 xyz + a14 y

3 + a15 y
2z + a8 y

2t+ a16 yz
2 + a9 yzt+ a17 z

3 = 0

S(1)
1 : a3 xy

2 + a14 y
3 + a15 y

2z + a8 y
2t+ a16 yz

2 + a9 yzt+ a10 yt
2 + a17 z

3 = 0

S(2)
1 : 4a1

2x2y + 4a3a1xy
2 + 4a4a1xyz + 4a5a1xyt+ 4a14a1y

3 + 4a15a1y
2z+

+ 4a8a1y
2t+ 4a16a1yz

2 + 2a4a5yzt+ a5
2yt2 + 4a17a1z

3 = 0

Using Algorithm 2.3 we conclude that the first family consists of ruled (or reducible) surfaces, while the
other ones are cubic surfaces containing the line l1 and no other lines (when not reducible).
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Therefore we have proved that, if a cubic surface does not contain a configuration of lines of type M2,

then, up to a linear change of coordinates, it is in one of the two families S(1)
1 or S(2)

1 , which will be studied
in Step 5, at the end of this section.

C. Study of the cubic surfaces containing a configuration M2 but not M3.

We can fix M2 := {l1 = (y, z), l2 = (x, y)}; the c.ss. of (0) containing M2 have to satisfy the conditions

a11 = a12 = a13 = a17 = a18 = a19 = a20 = 0

giving a family S2, say. We distinguish two cases: a) the line res (l1, l2) coincides with one the two lines of
M2 (say l1, up to a projectivity); b) the lines l1, l2,m := res (l1, l2) are distinct.
a) The conditions in this case are:

a2 = a7 = 0

and they give a family S2a. If the configuration M2 on a surface S ∈ S2a cannot be extended to M3, then
one of the two possibilities occurs:
a1) no other lines intersect l1 or l2, hence S contains only l1 and l2;
a2) all the lines of S pass through the point (0, 0, 0, 1).

In case a1), we first take the discriminant Dl1(p, q) of the conics lying on πl1(p, q) : py + qz = 0.
This polynomial must have the only solution (p, q) = (1, 0). In fact, if not, we can assume that, up to a
projectivity, the plane y = z intersects S in three lines that must be all equal to l1; hence the coefficients
have to satisfy

a1 = a5 = a10 = a8 + a9 = a3 + a4 + a6 = 0

and, from Algorithm 2.3, we easily see that in this case S contains infinitely many lines.
Then we take the discriminant Dl2(p, q) of the conics lying on πl2(p, q) : py + qx = 0. If Dl2(p, q) has the
only solution (p, q) = (1, 0), we get a set of equations on the coefficients of S that, together with the above
conditions given by Dl1(p, q), force all the corresponding c.ss. to be either reducible or RS.
Therefore we are left to study the case in which Dl2(p, q) has at least another solution different from (1, 0);
up to projectivity, we can assume that it is (0, 1), corresponding to the plane x = 0. The assumption a1)
implies that S ∩ {x = 0} = l32. Hence we impose on S2a this last condition which becomes

a8 = a9 = a10 = a15 = a16 = 0.

It turns out that these c.ss. already satisfy the initial requirement on Dl1(p, q) (i.e. to have (p, q) = (1, 0) as
only solution); so we obtain the family:

S(1)
2 : a1 x

2y + a3 xy
2 + a4 xyz + a5 xyt+ a6 xz

2 + a14 y
3 = 0.

Using 2.3 we see that these c.ss. (when irreducible) contain l1, l2 and no other lines.
In case a2), we may assume that S ∈ S2a contains also the line m := (x, z), i.e. that a8 = a10 = a14 = 0.

By a2), the lines res (l1,m) and res (l2,m) have to contain the point (0, 0, 0, 1); therefore, we obtain the
further conditions: a5 = a9 = 0 and this forces S to be a cone.
b) We have two cases:
b1) m does not pass through (0, 0, 0, 1) (e.g. m = (y, t));
b2) m passes through (0, 0, 0, 1) (e.g. m = (y, x− z)).

In case b1), if M2 does not extend to anM3 configuration, then necessarily the c.s. contains only l1, l2,m;
with the usual techniques involving the discriminants Dl1 , Dl2 , Dm we obtain the family

S(2)
2 : a4a5xy

2 − a4a5xyz − a5
2xyt+ a5

2xzt− a5a14y
3 − a4a8y

2z − a5a8y
2t+ a5a8yzt = 0.

In case b2), if M2 does not extend to an M3 configuration, then either S has other lines (again through
(0, 0, 0, 1)), then S turns out to be a cone; or S contains only the above three lines. In the last situation we
obtain the following family:

S(3)
2 : xy (y − z) a4 − x (y − z) (x− y − z)a6 + yt (y − z)a9 − a14y

3 − a15y
2z − a16yz

2 = 0.
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D. Study of the cubic surfaces containing a configuration M3 but not M4.

Up to a linear change of coordinates, we may assume that the three lines of M3 are

l1 = (y, z); l2 = (x, y); l3 = (x, t)

so that the equation of the generic cubic surface S through them is:

S3 : ax2y + bx2z + cxy2 + dxyz + exyt+ fxz2 + gxzt+ hy2t+ iyzt+ jyt2 = 0.

5.7. Let S ∈ S3; if M3 cannot be completed to a configuration of type M4, then necessarily the discriminant
Dl1(p, q) has the only solution (p, q) = (1, 0).

If M3 cannot be completed to an M4, then
i) either it does not exist a further line meeting l1 and l3;
ii) or there exists a line m 6= l2 meeting l1 and l3, but l1, l2, l3,m is not an M4 configuration.

i) In this case the conic Cl1(p, q), residual to l1 on the plane πl1(p, q) : py + qz = 0, is degenerate only on
the plane y = 0, i.e. Dl1(p, q) has the only solution (p, q) = (1, 0).
ii) In this case, m must contain one of the two points A := l1∩ l2 or B := l2∩ l3. Clearly, up to a projectivity,
we can assume that m passes through B and intersects l1 in a point, say C, different from A. Suppose there
exists a plane σ 6= {y = 0} on which the residual conic to l1 splits in two lines, one of them (say n) passes
necessarily through D := l3 ∩ σ. Clearly, the set {l1, l2, l3,m, n} contains an M4 configuration. Therefore
the only plane on which Cl1(p, q) splits must be, also in this case, y = 0. �

The computation of the discriminant involved in 5.7 gives:

Dl1(p, q) := q
(

α4p
4 + α3p

3q + α2p
2q2 + α1pq

3 + α0q
4
)

where

α0 = ah2 + c2j − ceh

α1 = 2ahi+ bh2 + 2cdj − cei− cgh− deh

α2 = ai2 + 2bhi+ 2cfj − cgi+ d2j − dei− dgh− efh

α3 = bi2 + 2dfj − dgi− efi− fgh

α4 = f(fj − gi).

Clearly, the only solution of Dl1(p, q) is (1, 0) if and only if the coefficients of S satisfy the system:

α1 = α2 = α3 = α4 = 0.

Taking all the solutions of it (for the sake of shortness, we omit them), we obtain several families of reducible

or ruled surfaces and six families, say S(1)
3 , . . . ,S(6)

3 , of irreducible cubic surfaces:

S(1)
3 : ax2y + bx2z + cxy2 + exyt+ gxzt+ jyt2 = 0

S(2)
3 : ahx2y + gcx2z + chxy2 + ehxyt+ ghxzt+ h2y2t+ jhyt2 = 0

S(3)
3 : adhx2y − d(cg − de)x2z + cdhxy2 + d2hxyz + edhxyt+ gdhxzt+ h2dy2t+ gh2yt2 = 0

S(4)
3 : (cgi+ d2j)x2y + gdix2z + ci2xy2 + di2xyz + i(gh+ 2dj)xyt+ i2gxzt+ hi2y2t+ i3yzt+ ji2yt2 = 0

S(5)
3 : ax2y + cxy2 + dxyz + fxz2 + hy2t = 0

S(6)
3 : 4afg2x2y + 4bfg2x2z + (2gdbi+ g2d2 + b2i2 − 4aifg)xy2 + 4dfg2xyz+

+ 2g2(dg + 3bi)xyt+ 4f2g2xz2 + 4g3fxzt− 2ig(−dg + bi)y2t+ 4ifg2yzt+ 4ig3yt2 = 0

It turns out that these ones have no M4 configuration on them (when not RS).
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E. Study of the cubic surfaces containing a configuration M4 but not a configuration M5.

We can assume, up to a projectivity, that the cubic surface S passes through the lines

l1 = (y, z); l2 = (x, y); l3 = (x, t); l4 = (x− t, y − z)

and let A = l1 ∩ l2 = (0, 0, 0, 1), B = l1 ∩ l4 = (1, 0, 0, 1), C = l3 ∩ l4 = (0, 1, 1, 0), D = l3 ∩ l2 = (0, 0, 1, 0).
So S4 has equation:

ax2(y−z)+bx(y−z)(y+z)+cy2(x−t)+dy(x−t)(x+t)+ey(yx−zt)+fxy(y−z)+gxy(x−t)+hx(yx−zt) = 0

If S ∈ S4 does not contain an L-set, then necessarily one of the following two cases occurs:
1. the only degenerate conics on S residual to l2 are on the two planes x = 0 and y = 0 and the only

degenerate conics on S residual to l1 are on the two planes y = 0 and y = z;
2. there exists a third plane π passing through l1 (resp. l2) with a degenerate residual conic on it.

We are going to study these cases separately: case 1 in 5.8 and 5.9, case 2 in 5.10, respectively.

5.8. Let S be an irreducible cubic surface of the family S4; assume that the conic Cl2(p, q) on the plane
πl2(p, q) : py + qx = 0 is degenerate only if (p, q) ∈ {(1, 0), (0, 1)}. Then S contains a square of lines such
that one of the vertices is a singular point of S; in particular, up to a projectivity, S has equation

ax2(y − z) + bx(y − z)(y + z) + cy2(x− t) + dy(xy − zt) + exy(y − z) + fxy(x− t) + gx(xy − zt) = 0 (12)

and (0, 0, 0, 1) is a singular point.

The discriminant of Cl2(p, q) is:

Dl2(p, q) := pq
(

α3p
3 + α2p

2q + α1pq
2 + α0q

3
)

, where

α0 = (c+ e)
(

bc− be− e2 − ef
)

α1 = ace+ ae2 − 4b2d− 4bcd− 2bcg − 4bde− 4bdf + 2beh+ 2ceh+

+ cfh+ de2 − df2 + e2g + 3e2h+ efg + 2efh

α2 = 4abd− ach+ 2adf − aeg − 2aeh+ 4bd2 + 4bdg + 4bdh+ bg2−
− bh2 − ch2 − 2deh− 2egh− 3eh2 − fgh− fh2

α3 = (a+ h)
(

ad− dh− gh− h2
)

.

From the assumption, all the roots of Dl2(p, q) must belong to the set {(1, 0), (0, 1)}, i.e. the coefficients αi’s
must satisfy one of the following four systems of equations:

α3 = α2 = α1 = 0; α3 = α2 = α0 = 0; α1 = α0 = α3 = 0; α1 = α0 = α2 = 0.

In particular, the parameters must satisfy either α3 = α2 = 0 or α1 = α0 = 0.
Note that if we exchange a with c, b with d, e with h and f with g in α3 and α2, we get, respectively, α0

and α1. This gives that it is enough to study only the case α3 = α2 = 0. All the solutions in a, . . . , h to this
system give rise to reducible cubic surfaces except the following five ones (where the denominators can be
assumed not zero):

[a = −h, g = −h− 2d];

[

a = −h, g =
hf + he+ hb− 2 bd

b

]

; [d = 0, h = 0, g = 0];

[

d = 0, h = 0, b =
ae

g

]

[

a =
h2 + gh+ dh

d
, c =

−2 h2e+ 3 hbd+ hdf − geh− deh+ 2 d2b+ gbd

h2

]

which give rise, respectively, to five families of cubic surfaces (say V1, . . . , V5). It is easy to see that V1 and
V2 are singular at the point (1, 0, 0, 1), V3 and V4 are singular at the point (0, 0, 0, 1), while V5 is singular at
the point P := (−d, 0, 0, h+ g + d).
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As far as V1, . . . , V4 are concerned, we can conclude that one of the vertices of the square l1, l2, l3, l4 is
singular.
As far as V5 is concerned, note that the singular point is not one of the four vertices A,B,C,D of the given
square; nevertheless, the following lines l1, l2, res (l2, l3), res (l1, l4) give rise to an M4 configuration (in fact
the condition that two vertices coincide implies d = 0 or h = 0, which in this case is not possible) and
moreover the singular point P is one of the vertices (P = res (l2, l3) ∩ res (l1, l4)).
So we prove the claim and, up to a linear change of coordinates, we can assume that the surface S passes
through l1, . . . , l4 as above and is singular at the point A = (0, 0, 0, 1). In this way we get the equation (12).

�

5.9. Let S be an irreducible cubic surface of the family (12) and let πl1(p, q) : p(y − z) + qy = 0 and
πl2(p, q) : py + qx = 0 be the pencil of planes of center l1 and l2, respectively. Assume that the three non
trivial roots of Dli(p, q), for i = 1, 2, belong to the set {(1, 0), (0, 1)}. Then S belongs to one of the following

families S(1)
4 , . . . ,S(8)

4 of irreducible singular cubic surfaces:

S(1)
4 : abx(xy + xz − 2yt) + aexy(x− t) − b2(y − z)(xy + xz − 2yt)−

− bey(x− t)(y − z) + bgx(2xy − 3yt+ zt) + egxy(x− t) = 0

S(2)
4 : bfx2(y − z) + c2yt(y − z) − cexy(y − z) − cfxy(x− t) − bcx(y − z)(y + z) = 0

S(3)
4 : ax2(y − z) + ey(x− t)(y − z) + fxy(x− t) = 0

S(4)
4 : ax2(y − z) + b(y − z)(xy + xz − 2yt) + ey(x− t)(y − z) + fxy(x− t) = 0

S(5)
4 : ax2(y − z) + bx(y − z)(y + z) + cy2(x− t) + exy(y − z) = 0

S(6)
4 : bx(y − z)2 − cy2(x− t) − fx(x− t)(y − z) = 0

S(7)
4 : ax2(y − z) + cy2(x− t) − fxt(y − z) = 0

S(8)
4 : cy2(x− t) + exy(y − z) + fx(x− t)(y − z) = 0

As usual we compute Dl1(p, q) and Dl2(p, q) and impose the suitable conditions on the coefficients of these
polynomials. In this way we obtain (out of the reducible ones) the above families of cubic surfaces arising,
respectively, from the following sets of conditions on the coefficients of (12):

[

d = −c, c = 2 b+ e, f = −2 ab+ ae+ 3 bg + eg

b

]

, [d = −c, a = −bf/c, g = 0] , [d = −c, b = 0, c = e, g = 0]

[d = −c, c = 2 b+ e, g = 0] , [g = 0, d = 0, f = 0] , [d = 0, g = −f, a = f, e = −2 b]

[b = 0, d = 0, e = 0, g = −f ] , [b = 0, d = 0, g = −f, a = f ] .

�

5.10. Let S ∈ S4 and assume that there exists a plane, say π, through l1, out of y = 0 and y − z = 0, on
which the residual conic to l1 is degenerate. Then there exists a line (on π), say m5, meeting both l1 and l3.
Moreover, one of the following two cases occurs:
i) if m5 contains one of the vertices of M4, then either S contains an L-set or it belongs to one of the

following three families S(9)
4 ,S(10)

4 ,S(11)
4 of irreducible singular cubic surfaces:

S(9)
4 : ax(y − z)(x− t) − bx(y − z)2 + cy(y + z)(x− t) = 0

S(10)
4 : ax2(y − z) + cy(2xy − yt− zt) + dxy(y − z) = 0

S(11)
4 : ax2(y − z) + bx(y − z)(y + z) + cy(y + z)(x− t) = 0;

ii) if m5 does not contain any vertex, then either S contains an M5 configuration or it is in the class B.

Call w and w′ the two lines such that π ∩ S = l1 ∪w ∪w′; then one (say m5) among w and w′ meets l3.
i) Assume first that m5 contains a vertex of the square. Then, up to a projectivity, we may assume that m5
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contains the vertex A (and not C, since π 6= {y− z = 0}, by assumption); so we can choose m5 = (x, y+ z).
Note that in this case the point A is singular. The equation of the generic cubic surface passing through
l1, l2, l3, l4,m5 is then:

x2(y − z)a+ x(y − z)(y + z)b+ y(2xy − yt− zt)c+ xy(y − z)d+ xy(x− t)e+ x(xy − zt)f = 0.

Let us remark that l1, l2, l3, l4 and l1,m5, l3, l4 are two configurations of type M4; if S does not contain an
L-set then, in particular, they cannot be completed into an L-set.
Let m6 := res (l1,m5); in the general case it meets only l1 among the lines of the first square, giving an
L-set. To avoid this situation, one of the following conditions must hold:

m6 = l1; m6 = m5; m6 ∩ l2 6= ∅; m6 ∩ l3 6= ∅; m6 ∩ l4 6= ∅.

It is clear that the first two conditions are contained in the other ones, which give, respectively: e = f, d =
−c, f = −a.
Let m7 := res (l1, l2); in the general case it meets only l1 among the lines of the second square, giving an
L-set. As in the previous case, the conditions m7 = l1; m7 = l2; m7 ∩ l3 6= ∅; m7 ∩ l4 6= ∅; m7 ∩m5 6= ∅ can
be reduced to b = 0, f = −a, f = 0. Hence we can conclude that, if S does not contain an L-set, then one
of the following systems of equations must be satisfied:

f = −a,
{

b = 0
e = f

{

b = 0
d = −c

{

e = 0
f = 0

{

f = 0
d = −c

which give, respectively, the following families of surfaces:

Y1 : xz(x− t)a− x(y − z)(y + z)b− y(2xy − yt− zt)c− xy(y − z)d− xy(x− t)e = 0

Y2 : x2(y − z)a+ y(2xy − yt− zt)c+ xy(y − z)d+ x(2xy − yt− zt)e = 0

Y3 : x2(y − z)a+ y(y + z)(x− t)c+ xy(x− t)e+ x(xy − zt)f = 0

Y4 : x2(y − z)a+ x(y − z)(y + z)b+ y(2xy − yt− zt)c+ xy(y − z)d = 0

Y5 : x2(y − z)a+ x(y − z)(y + z)b+ y(x− t)(y + z)c+ xy(x− t)e = 0.

With the Algorithm 2.3 we can compute all the lines of Y1; studying their incidence relations, it is possible
to see that, for generic coefficients Y1 contains an L-set, unless

e = −a(b+ c+ d)

b
, d = −2b− c ;

these conditions give rise to the family S(9)
4 . Analogous computations show that Y2 gives rise (with f = 0)

to the subfamily S(10)
4 and, finally, Y4 gives rise (with the condition d = −c) to the subfamily S(11)

4 .
ii) Assume now that m5 does not contain any vertex of the square. In this case m5 is skew w.r.t. l2 and l4;
up to a projectivity we may assume that m5 : t = 0 = z. The equation of the generic cubic surface passing
through l1, l2, l3, l4,m5 is

(xz2 − y2t)a+ xz(x− t)f + (x2z − yt2)b+ x(xz − yt)e− xz(y − z)d+ z(xz − yt)c = 0.

With the same kind of computations performed in the previous case, one can show that the surfaces of this
family either contain an L-set on are in the class B. �

In particular, since all the c.ss. obtained above are singular, we have proved that

5.11. Every smooth c.s. contains an L-set. �

(This is part of the forthcoming proof of 1.3).
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F. Study of irreducible cubic surfaces not containing an L-set.

So far we have collected several families of cubic surfaces S(j)
i which correspond to those not containing

certain configurations of lines. Now we want to determine suitable representatives (and their orbits) of these
families (according to Step 5 at the beginning of this section). Here we summarize the method used to obtain
the list (3).

Let U be one of the above families of cubic surfaces.

Step 51 We determine, using Algorithm 2.3, the lines of the cubic surfaces of U , we study their configuration
in the generic case and we collect the degenerate cases which can occur (adding them to the

collection of the above families S(j)
i ).

Step 52 We check if the configuration of lines of the generic cubic surface of U can be fixed up to projectivity.
If this is possible (and it will turn out that this is indeed possible for all the cases to be considered),
we choose specific equations for them, obtaining a configuration of lines, say L∗

U .
Then we construct a family U ′: take the linear system of all the cubic surfaces passing through L∗

U

and impose the requirement that the sections with the planes containing two incident lines of L∗
U

be of the same type of the corresponding plane sections of U . In particular, from this construction
it follows that U is contained in U ′ up to projectivity.
In general the family U ′ is simpler to describe than the family U , since the lines of its surfaces are
fixed and do not depend on the parameters. (We anticipate that the configuration of lines obtained
in this step are those listed in (4)).

Step 53 We compute the group G :=
⋂

l∈L∗

U

Stab(l).

Step 54 We fix a specific cubic surface T in U ′ and we check whether moving it with the elements of G we
obtain all the elements of U ′. If this is the case, OT (the orbit of T under the action of PGL4)
contains the whole family U and we are done. It will turn out that there is only one case in which
this does not occur: it is the case of the family T13, studied below.

We observe that Step 53 is almost done in Section 3, where we list the groups H(i); indeed, for i = 3, . . . , 13,
H(i) =

⋂

l∈L∗

i

Stab(l).

Here we give some examples of the application of the above procedure and then we list all the results.

First example. Consider the family

U := S(5)
3 : ax2y + cxy2 + dxyz + fxz2 + hy2t = 0.

Step 51: these cubic surfaces contain only the lines (x, y), (y, z), (x, t) by construction. The intersection of

any cubic surface S of S(5)
3 with the plane y = 0 is given by fxz2. If f = 0, then we have a degenerate case to

consider (which is trivial here, since it corresponds to reducible cubic surfaces). Otherwise we use Algorithm
2.3 applied to the lines (x, y) and (y, z), to compute all the lines of S. If f, h and a are not zero, then S
contains exactly the three lines above. Moreover the case h = 0 again gives reducible surfaces. Therefore we
collect only the family obtained from the condition a = 0 (this is again a trivial case, since Algorithm 2.3
immediately shows that these surfaces are ruled surfaces).
Step 52 in the present case is unnecessary, since the lines are already fixed. A family U ′ meeting the

requirement of Step 52 is then the family S(5)
3 itself.

Step 53: the group G is here H(5) (see Section 3), i.e.

H(5) :=

















α 0 0 0
0 β 0 0
0 ǫ γ 0
φ 0 0 δ







∣

∣

∣ α, . . . , φ ∈ K, αβγδ 6= 0











Step 54: take a specific cubic surface in the family U ′ = S(5)
3 , given e.g. by a = f = h = 1, c = d = 0 and

call it T5. If we move it with the general matrix A of H(5) we obtain:

A(T5) : α2βx2y +
(

β2φ+ αǫ2 + αβ2 + αβǫ
)

xy2 + αγ (2 ǫ+ β)xyz + αγ2xz2 + β2δy2t = 0. (13)
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It is easy to see (equating the coefficients) that for those values of the parameters a, c, d, f, h which give rise
to a cubic surface S with exactly the three lines fixed above, there exists a matrix A ∈ H(5) such that A(T5)
is S. Hence in this way we have shown that the orbit of the cubic surface T5 consists of all the cubic surfaces
containing a configuration of lines of type L5.

Second example. We now take the family

U := S(1)
3 : ax2y + bx2z + cxy2 + exyt+ gxzt+ jyt2 = 0.

Step 51: from the construction that led to S(1)
3 we know that every S ∈ S(1)

3 passes through the three lines
(x, y), (y, z), and (x, t). The intersection of S with the plane y = 0 is: xz(bx+ gt). Now we apply Algorithm
2.3 to S and we obtain the list of its lines (for simplicity we call them m1, . . . ,m6 although m1,m2,m3 are
indeed l1, l2, l3):

m1 := (x, y), m2 := (y, z), m3 := (x, t), m4 := (y, bx+ gt),

m5 :=
(

αx + cg2y, bcgy − αt
)

, m6 :=
(

αx+ cg2y, cg(jb− eg)y + jαt− cg3z
)

where we have denoted by α the coefficient ag2 + b2j − beg. The incidence relations of these lines are the
following:















m1 m2 m3 m4 m5 m6

m1 ∗ (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0) (0, 0, jα, cg3)
m2 ∗ ∅ (g, 0, 0,−b) ∅ ∅
m3 ∗ (0, 0, 1, 0) (0, 0, 1, 0) ∅
m4 ∗ (0, 0, 1, 0) ∅
m5 ∗ (−cg4, αg2, (2bj − eg)α, bcg3)















From the intersections written above, we obtain the following degenerate cases:
-) m2 ∩ m4 = (0, 0, 0, 1): then g = 0. It turns out that each element of the corresponding family is

projectively equivalent to T5.
-) m1 ∩ m6 = (0, 0, 1, 0): this happens either if g = 0 or if c = 0. The case g = 0 has already been

considered; the case c = 0 gives a family of ruled surfaces, as one can verify intersecting a surface of
this family with any plane passing through the line (y, z): the section always splits into three lines.

-) m1 ∩m6 = (0, 0, 0, 1): then jα = 0, thus α = 0 (since j = 0 implies S reducible). If b = 0, then we get
a = 0, since S is irreducible; the corresponding c.ss. are represented by T6. Otherwise, j = (beg−ag2)/b2;
also in this case, the corresponding surfaces are projectively equivalent to T6.

It is clear that special positions of the point m5 ∩m6 lead to conditions already considered.
Step 52: in the generic case, the six lines m1, . . . ,m6 are disposed as in configuration L11 and they can be
fixed up to projectivity: hence we assume they are the lines of the configuration L∗

11. Now we take the
generic cubic surface passing through L∗

11 and we impose on it all the conditions that are satisfied by the

surfaces of the family S(1)
3 , i.e. res (m1,m3) = m3. In this way we obtain the family:

U ′ : ax2y + bx2z − axy2 + bxyt− bxzt− byt2 = 0. (14)

According to Step 52, this family is described by fewer parameters and hence it is simpler to analyze.
Step 53: the group G is here H(11) (see Section 3) i.e.

H(11) :=







α 0 0 0
0 α 0 0
0 β − α β 0

α− β 0 0 β







and we move, as in Step 54, a specific surface of U ′ (e.g. the surface T11, obtained in case a = 1, b = 1) by a
matrix A ∈ H(11):

A(T11) : α3x2y + β2αx2z − α3xy2 + β2αxyt− β2αxzt− β2αyt2 = 0.
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A comparison of the coefficients of this family of surfaces with the family (14) shows that, up to projectivity,
T11 represents any surface of U ′. Hence we have proved that OT11

describes all the cubic surfaces with a

configuration of lines of type L11 and, in particular, the generic element of the family S(1)
3 .

Third example. Let us consider the family

U := S(4)
4 : ax2(y − z) + b(y − z)(xy + xz − 2yt) + ey(x− t)(y − z) + fxy(x− t) = 0.

Step 51 and 52: the configuration of the lines of the generic element of S(4)
4 is of type L13 and can be fixed

up to projectivity: we refer to L∗
13 as in (4). The family U ′, consisting of the c.ss. having, in general, exactly

L∗
13 as configuration of lines, is:

U ′ : X (y − z)
(

x2 − xy − xz + 2 yt
)

+ Y y (x− t) (y − z) + Zxy (x− t) = 0.

In particular, we can identify U ′ with a two dimensional space P2 (with coordinates X,Y, Z).
Step 53: contrary to what we have done in the previous cases, we now take for G the whole group

G := Stab(L13
∗) ∼= H(13) × S3(g

(13)
2 , g

(13)
3 ) × S2(f

(13)
2 )

of matrices which map L∗
13 to itself.

Step 54: consider the action of G on the irreducible cubic surfaces of U ′. Since the reducible c.ss. of
U ′ have infinitely many lines, then necessarily at least one of the three discriminants Dl1 , Dl2 , Dm (where
m := (y, x − z) = res (l1, l2)) is zero. It turns out that this occurs if and only if (X,Y, Z) belongs to the
plane quartic curve

Q : XZ(Y − 2X)(2X − Y + Z) = 0.

Conversely, if (X,Y, Z) ∈ Q then the corresponding c.s. of U ′ is reducible, as follows from the factorization
of the involved polynomials.

Therefore we have to consider the action of G on U ′ \Q. Moreover, it is easy to see that f
(13)
2 (S) = S,

for any S ∈ U ′; so the orbit OG
S of S under the action of G coincides with that obtained under the action of

S3(g
(13)
2 , g

(13)
3 ).

If S = (a, b, c) is an irreducible cubic surface of U ′, it is easy to compute its orbit OG
S which turns out

to be the union of the following six lines in P2:

2cX − cY − (2a− b)Z, 2cX − cY + (2a− b+ c)Z, 2(2a− b)X − (2a− b)Y + (2a− b+ c)Z

2(2a−b+c)X−(2a−b+c)Y +(2a−b)Z, 2(2a−b)X−(2a−b)Y −cZ, 2(2a−b+c)X−(2a−b+c)Y +cZ.

From this we see that (although G has been taken as large as possible) no 0-dimensional subvariety of U ′ \Q
can intersect all the orbits, hence, in order to parametrize the orbits, we are forced to consider a subvariety
of U ′ of dimension at least 1. Take, for instance, the line of equation Y = 0. If we set X = q and Z = p, we
obtain exactly the one–dimensional subfamily of cubic surfaces of U ′:

T13(p, q) : pxy(x− t) + q(y − z)(x2 − xy − xz + 2yt) = 0

which is irreducible iff pq(2q + p) 6= 0 (as follows by intersecting Q with the line Y = 0). For simplicity let
us call W this open set of the line Y = 0 in U ′ ∼= P2

X,Y,Z ; in this way we introduce the variety P1 \∆ (where
∆ := {(1, 0), (0, 1), (−2, 1)}) and we identify it with W ⊂ U ′. From the above argument, it is clear that the
irreducible surfaces of the initial family U are represented by U ′ \Q and that this space is parametrized by
P1 \ ∆. In fact, if S ∈ U ′ \Q is an irreducible c.s., then

OS ∩ (U ′ \Q) = OG
S hence OS ∩W = OG

S ∩W.

In particular, any orbit OS intersects W ∼= P1 \ ∆ (this gives the part of the Proof of Theorem 1.8

concerning P1 \ ∆). More precisely, OS ∩W consists (in general) of 6 points, hence 6 points of W belong
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to the same orbit. We can explicitly compute their coordinates: if S = (a, c) is a generic point of W , then
OS ∩W consists of:

(a, c), (2a+ c,−2c), (2a+ c,−4a), (−a, 2a+ c), (c, 4a), (−c, 4a+ 2c).

(This gives the Proof of Theorem 1.12, since S3 acts on P1 \∆ and the orbits of this action are the above
sets of 6 points).

This concludes the study of the family S(4)
4 .

The above description allows us to compute Stab(S), where S := T13(p, q) and pq(2q + p) 6= 0. As in

Section 3, we compute H
(13)
1 := Stab(S) ∩H(13), obtaining:

H
(13)
1 :=

















rs 0 0 0
0 r2 0 0
0 r (r − s) rs 0

s (r − s) 0 0 s2







∣

∣ r, s ∈ K, rs 6= 0











We have two cases to distinguish: if 4q+p 6= 0 then it is easy to verify that Stab(S)∩
(

H(13) × S3(g
(13)
2 , g

(13)
3 )

)

is again H
(13)
1 , so taking into account that f

(13)
2 (S) = S we obtain that

Stab(S) ∼= H
(13)
1 × S2(f

(13)
2 ).

If 4q + p = 0, then the equation of S is:

3x2y + x2z + xy2 − 4xyt− xz2 − 2y2t+ 2yzt = 0.

For this specific cubic surface, Stab(S) ∩ g(13)
2 H(13) = g

(13)
2 H

(13)
1 ; more precisely it turns out that

Stab(S) ∼= H
(13)
1 × S2(g

(13)
2 ) × S2(f

(13)
2 ).

5.12. With the techniques used in the above examples we obtain that:

- each element of S(1)
1 and S(2)

1 is projectively equivalent to T1;

- each element of S(1)
2 is p.e. to T2;

- each element of S(2)
2 is p.e. to T3;

- each element of S(3)
2 is p.e. to T4;

- the generic elements of S(1)
3 ,S(2)

3 ,S(3)
3 ,S(4)

3 ,S(6)
3 are p.e. to the c.s. T11;

- two special subfamilies of S(1)
3 ,S(2)

3 are represented by T6;

- the generic elements of S(5)
3 and of a subfamily of S(1)

3 are p.e. to T5;

- each element of S(1)
4 and S(2)

4 is p.e. to T12;

- each element of S(3)
4 and S(8)

4 is p.e. to T7;

- the generic element of S(4)
4 is p.e. to T13(p, q), while a subfamily of S(4)

4 is represented by T7;

- the generic element of S(5)
4 is p.e. to T9, while a subfamily of S(5)

4 is represented by T10;

- each element of S(6)
4 and S(7)

4 is p.e. to T8;

- the generic element of S(9)
4 ,S(10)

4 ,S(11)
4 is p.e. to T12 again;

- two subfamilies of S(10)
4 and S(11)

4 , respectively, are represented by T8

(here “each” means “each, when not reducible”). �

The above study concludes the Proof of Theorem 1.8.
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G. Study of cubic surfaces containing an L-set.

5.13. Let S be an irreducible cubic surface and let r ⊂ S be a line such that Dr(p, q) 6≡ 0 and the planes
π1(r), . . . , π5(r) are distinct. Then S is smooth out of r.

This can easily be checked as follows: suppose that S is singular at a point P 6∈ r; up to a projectivity we
can assume r = (x, y) and P = (1, 0, 0, 0). We impose these conditions on (0) and we compute Dr(p, q). By
factorizing it, we get that two planes among π1(r), . . . , π5(r) coincide. �

5.14. Let S be an irreducible cubic surface, r ⊂ S be a line and let π be a plane through r such that the
cubic curve π ∩ S splits into three lines. If these three lines are not distinct, then S is singular.

Let us first assume that the three lines all coincide with r = (x, y). This gives 5 linear conditions on (0).
The computation of the Jacobian shows that, in this case, the surface must be singular.
Assume now that there are exactly two distinct lines, r = (x, y) and s = (z, y), on the plane section π ∩ S
and assume also that res (r, s) = r. Imposing these conditions on (0), we can see again that the obtained
surfaces are singular. �

5.15. Let S be an irreducible surface containing an L-set. The following conditions are equivalent:
i) S is smooth;
ii) for any line r contained in S, Dr(p, q) 6≡ 0, the planes π1(r), . . . , π5(r) are distinct and on any plane

πi(r) there are two distinct lines out of r, for i = 1, . . . , 5;
iii) if s1 and s2 are two distinct meeting lines on S, then Dsi

(p, q) 6≡ 0, the planes π1(si), . . . , π5(si) are
distinct for i = 1, 2 and S is smooth at the point s1 ∩ s2;

iv) the number of lines contained in S is 27.

i) ⇒ ii) Let us assume first that there exists a line r such that two planes among π1(r), . . . , π5(r) coincide.
Clearly, up to a projectivity we may assume r = (x, y) and that the double root of Dr(p, q) is (1, 0) (cor-
responding to the plane y = 0). If we impose these conditions on the generic cubic surface, we see at once
that S has at least a singular point. Using 5.14 we conclude the proof.
ii) ⇒ i) Since S contains an L-set of lines, say L := (l1, . . . , l5), then it cannot be a cone and l1, l2, l3 form
an M3-type configuration. By assumption the planes π1(li), . . . , π5(li) (i = 1, 3) are distinct, so by 5.13, S
is smooth out of the line l1 and out of the line l3; hence S is smooth everywhere.
ii) ⇒ iii) Obvious, since we have already proved the equivalence i) ⇔ ii).
iii) ⇒ i) Immediate, from 5.13.
i − ii − iii) ⇒ iv) Since S contains an L-set, then S contains two incident lines, say s1 and s2. From the
assumption ii), s3 := res (s1, s2) is distinct from s1 and s2. Let us apply the argument of Algorithm 2.3
to this plane section s1 ∪ s2 ∪ s3: again from ii), through each si pass 4 distinct planes (out of the plane
containing s1, s2, s3) on which lie two distinct lines of S (out of si). Hence there are 8 distinct lines (out of

the three starting lines), say s
(1)
i , . . . , s

(8)
i , meeting si.

Finally let us notice that s
(k)
i does not meet sj , if i 6= j, for any k = 1, . . . , 8, otherwise either s1, s2, s3, s

(k)
i

are four coplanar lines of S (while S is irreducible) or s1, s2, s3, s
(k)
i must meet at the same point; but this

is impossible since S is smooth, by the assumption i).
Therefore there are exactly 24 distinct lines, out of s1, s2, s3, on the surface S.
iv) ⇒ i). Assume that S is singular at a point P ; since S contains an L-set, then there are two meeting
lines, say s1 and s2, on S such that P 6∈ s1. Let us apply the argument of Algorithm 2.3 to find all the lines
on S, starting from the plane section s1 ∪ s2 ∪ s3 (s3 := res (s1, s2) not necessarily distinct from s1 and s2).
From 5.13, the planes π1(s1), . . . , π5(s1) are not distinct, hence the number of lines of S cannot exceed 25,
against the assumption. �

Now we want to find explicit expressions for the conditions in 5.15. To this end, let us assume that S
contains L∗ = (l1, l2, l3, l4, l5) (defined in (1)), so S is in (2). Let A = l1 ∩ l2 = (0, 0, 0, 1). From 5.15 we
immediately obtain :

5.16. Let S be a cubic surface of the family (2). Then S is smooth if and only if the discriminants
Dl1(p, q), Dl2(p, q) have no multiple roots and S is smooth at A := l1 ∩ l2. In particular, S is smooth if and
only if σ 6= 0, where σ is defined in thm. 1.4.
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Computing the two discriminants we get:

Dl1(p, q) :=

p(p− q)(ap2 − gpq + cq2)
[

(2a2 + 2ab− 2ac− bd+ bg − d2 + dg)p+ (a− c− d)(2a+ b− d)q
]

Dl2(p, q) := pq(p− q)
[

(a+ c+ g)(a2 + ac+ 2ba− ag + b2 − bg)p2+

+ (2a2(a+ b− 6c− d) − ab(6c+ 2d− g) + 2ac(c+ 3d) + ag(d+ 2g) + 2bcd− cg(b+ d) + g2(b − d))pq+

+ (a+ c− g)(a2 + ac− 2ad+ ag + d2 − dg)q2
]

Moreover Dl1(p, q) and Dl2(p, q) have multiple roots if and only if their discriminants (w.r.t. p and q) vanish,
i.e.:

Dis(Dl1(p, q), p) = 0 = Dis(Dl1(p, q), q) (a)

Dis(Dl2(p, q), p) = 0 = Dis(Dl2(p, q), q) (b)

The polynomial σ is given by the square–free l.c.m. of the polynomials appearing in (a) and (b), together
with the condition a+ b− c = 0 (equivalent to A singular). �

Proof of Theorem 1.3. We already noticed that, if S is a smooth c.s., then it contains an L-set (from
5.11). To count the number of its L-sets, we can use 5.15 as follows:
− the line l1 can be chosen in 27 different ways;
− the line l2 (meeting l1) can be chosen in 10 different ways;
− the line l3 (meeting l2 and skew with l1) can be chosen in 8 different ways;
− the line l4 (meeting l1, l3 and skew with l2) can be chosen in 4 different ways;
− the line l5 (meeting l2 and skew with l1, l3, l4) can be chosen in 3 different ways.

So ♯{L -sets } = 27 · 10 · 8 · 4 · 3 = 25, 920. �

Proof of Theorem 1.4. It follows from the equivalence i) ⇔ iv) of 5.15 and from 5.16.

Proof of Theorem 1.5. It is enough to prove that cones and RS’ do not contain an L-set. Clearly, this is
true for cones. Now let S be a RS; as in 5.1 we can assume that S contains the lines r,m1,m2,m3 and r is
a double line. If we intersect S with any plane πr(p, q) : px + qy = 0 containing r, then the computation
shows that πr(p, q) ∩ S = r2 ∪m(p, q), where m(p, q) is the corresponding residual line. In particular, any
line of S meets either r or m1. Hence, in order to obtain all the lines of S, it is enough to compute the lines
meeting m1. With the usual procedure, it turns out that two possibilities arise: either there is a further line
(skew with r) and meeting all the lines m(p, q)’s (general case) or there are no further lines on S (these c.ss.
are classically known as Cayley ruled cubic surfaces). It is clear that, in both cases, S does not contain an
L-set. �

Proof of Theorem 1.6. We want to find the conditions characterizing the reducible surfaces in the family
(2). From 1.5 and 1.1, it follows that a surface S passing through an L-set contains infinitely many lines
if and only if it is reducible. Hence it is enough to find out for what values of the parameters a, . . . , g the
corresponding c.s. of (2) contains infinitely many lines. Note first that res (l2, l5) is distinct from both l2
and l5 (in fact l4 intersects the plane 〈l2 + l5〉 in a point not belonging to l2 ∪ l5). Therefore, if S contains
infinitely many lines, then either l2 or l5 or res (l2, l5) must meet infinitely many lines, i.e.

either Dl2(p, q) ≡ 0 or Dl5(p, q) ≡ 0 or Dres (l2,l5)(p, q) ≡ 0.

Studying these equations, we obtain the following:

5.17. Let S be a cubic surface of the family (2). Then S is reducible (hence it contains a plane) if and only
if one of the following groups of conditions is satisfied:

{

b = −d
a = c+ d

,

{

c = a+ b
g = 2a+ b

,







a = 0
c = 0
g = 0

,

{

d = 2a+ b

c = − (a+ b)(a+ b− g)

a

,
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which give rise, respectively, to the following subfamilies of (2):

(y − x) (2c(xy − zt) + d(2xy − xz − yt) − g(xz − yt)) = 0

(y − z)
(

2a(x2 + xt− yt) + b(xz + 2xt− yt) + d(xz + yt)
)

= 0

(b(x− t) + d(y − z)) (xz + yt) = 0

(a(x− y + z + t) + b(z + t)) (2ay(x− t) + (b− g)(xz − yt)) = 0.

�

6. Proofs of the theorems (II): singular cubic surfaces containing an L-set

In this last section we want to classify singular irreducible cubic surfaces containing an L-set; we have
already parametrized them by the subvariety Σ \ R of P4; moreover, from the result of Section 2 we know
that each of them can be expressed as the determinant of a matrix of linear forms (see Prop. 2.4) and we
can get its rational equation.

Now we use an approach quite similar to that considered in Section 5, which gave the parameter space P4

and the exceptional cases T1, . . . , T13. Most of the required computations has been already done in Section 5,
so we only sketch them.

For example, to classify c.ss. with one singular point we consider the configurations M1, . . . ,M5 in
Figure 2 and we assume that one intersection point of two lines of Mi, for i = 2, 3, 4, 5 (resp. one point of
M1) is singular. Following Step 1, . . . , 5 of Section 5, one can rather easily prove the analogous result 5.11
in the case of one singular point.

Similarly, we can proceed for c.ss. containing two or three singular points.
In the case of four singularities, it is easier to choose 4 points in general position and to study c.ss. having
them as singular points; using Algorithm 2.3, one can describe the configuration of their lines and, in
particular, their L-sets.

In this way we can prove the following result, where the names of the lines are as in (1) and the
intersection points are:

A := l1 ∩ l2 = (0, 0, 0, 1); B := l1 ∩ l4 = (1, 0, 0, 1);

C := l3 ∩ l4 = (0, 1, 1, 0); D := l2 ∩ l3 = (0, 0, 1, 0); E := l2 ∩ l5 = (0, 0, 1,−1).

Proposition 6.1. Let S be an irreducible c.s. with finitely many lines and not projectively equivalent to
any Ti, for i = 1, . . . , 13. We have the following facts:

i) if S has (at least) one singular point, then either it is projectively equivalent to a c.s. containing L∗ and
singular at C or it has more than one singular point;

ii) if S has (at least) two singular points, then either it is projectively equivalent to a c.s. containing L∗

and singular at C and D or it has more than two singular points;

iii) if S has (at least) three singular points, then either it is projectively equivalent to a c.s. containing L∗

and singular at C,D and E or it has four singular points;

iv) if S has four singular points, then it is projectively equivalent to the (unique) c.s. containing L∗ and
singular at B, C, P1 := l1 ∩ res (l1, l4) = (1, 0, 0,−1), P2 := l3 ∩ res (l3, l4) = (0, 1,−1, 0).

Remark 6.2. The computation of the equations of the families arising in the above proposition is straight-
forward; namely it is enough to impose to the generic cubic surface through L∗ (having equation (2)) to be
singular at C (resp. at C,D, at C,D,E, at B,C, P1, P2). In each case we get a linear system of dimension
4− r, where r is the number of the singular points; such linear systems will be denoted by P3

C , P2
C,D, P1

C,D,E ,

P0
B,C,P1,P2

respectively. The equations of their general elements can be obtained from (2) and the linear
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conditions coming from the imposed singularities; we list here, for each of the above families, the set eqi of
the corresponding equations and the name of its general element:

P3
C : eq1 := {a+ c− g = 0, T21(a, b, d, g)

P2
C,D : eq2 := {eq1, a− c− d = 0, T20(a, b, d)

P1
C,D,E : eq3 := {eq2, 2a+ b− d = 0, T18(a, b)

P0
B,C,P1,P2

: eq4 :=











a+ c+ g = 0
eq1
a+ 2b+ c− g = 0
a+ c+ 2d+ g = 0

, T15 : x2y − xy2 + xz2 − yt2 = 0.

The usual application of Algorithm 2.3 allows us to compute the lines of each of the above linear systems,
obtaining that the general elements of them have, respectively, 21, 16, 12, 9 lines.

Remark 6.3. The condition c = g − a defining P3
C inside P4 leads to conclude that P3

C is a component of
Σ; moreover Proposition 6.1 i) implies that every element of Σ \ R is projectively equivalent to an element
of P3

C . Finally it is clear that the linear systems defined in 6.2 are in the following chain:

P4 ⊃ Σ ⊃ P3
C ⊃ P2

C,D ⊃ P1
C,D,E .

Definition. Let Ps be a linear space parametrizing a family of c.ss. and suppose that the general surface
has a constant number m of lines; we call degenerate locus of Ps the subset Σ(Ps) consisting of c.ss. which
either are reducible or have less than m lines.

Observe that the subset Σ of P4 defined in Section 1 is exactly its degenerate locus.
Since we can compute the lines of the families introduced in 6.2 (by Algorithm 2.3), with techniques similar
to those used to find out Σ ⊂ P4, we are able to compute the degenerate locus of Ps (where Ps is one of the
above families).
Moreover, we study the locus Σ(Ps) and the corresponding subfamilies arising from it; some of these consist
of c.ss. having more than the required number of singularities (hence included in another family), some
others consist of reducible cubic surfaces. Therefore we keep only the subfamilies of Ps of irreducible c.ss.
having the same number of singular points than the general element of Ps and a smaller number of lines.
Again we compute and study the degenerate locus of each of these collected subfamilies.

Here we list the obtained result:

Proposition 6.4. The following facts hold:
i) the degenerate locus of P3

C is

Σ1 : bg(a− g)(2a+ b−d)(2a+ b− g)(2a−d)(2a− g)(2a−d− g)(d− g)(4a2−2ad−2ag+ bg+dg) = 0.

The components of Σ1 which consist of c.ss. with less than 21 lines and only one singular point
correspond to the factors 2a− g, 2a− d, d− g, respectively;

ii) the degenerate locus of P2
C,D is

Σ2 : bd(a− d)(2a− d)(2a− d+ b)(b+ d) = 0.

Its components consisting of c.ss. with less than 16 lines and only two singular points correspond to the
factors d and a− d, respectively;

iii) the degenerate locus of P1
C,D,E is

Σ3 : b(a+ b)(2a+ b) = 0.

Its component consisting of c.ss. with less than 12 lines and only three singular points corresponds to
the factor 2a+ b. �

A detailed study of the two families arising in 6.4 i) from the conditions g = 2a and d = 2a on P3
C ,

which are:
w1 : 2a(x− y)(x+ t)(y − z) + b(x− t)(xz + yt) + d(y − z)(xz + yt) = 0
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and
w2 : 2ay(t− x)(x − y + z + t) + b(t− x)(xz + yt) + g(x− y + z + t)(xz − yt) = 0

respectively, shows that they are projectively equivalent, i.e. for almost each S ∈ w1 there exists a c.s.
T ∈ w2 which is p.e. to S. Indeed, if we call a1, b1, g1 the parameters of w2 instead of a, b, g (to distinguish
them from the parameters of w1), we substitute

a =
1

4
g1(2a1 − g1 + b1), b = b1(a1 − g1), d =

1

2
(2a1 − g1)(2a1 − g1 + b1)

in w1 and we move the resulting c.s. by the change of coordinates:

A0 :=







0 (a1 − g1)(2a1 − g1) (g1 − a1)(2a1 − g1) 0
0 (2a1 − g1)

2 0 0
4b1(a1 − g1) (2a1 − g1)

2 0 0
2(g1 − a1)(2a1 − g1 + b1) (a1 − g1)(2a1 − g1) (g1 − a1)(2a1 − g1) 2(g1 − a1)(2a1 − g1 + b1)







we obtain the generic element of w2. Let us sketch the techniques used to obtain this result. First we need
the following notion (which will also be used in the sequel):

Definition. Suppose that S is a cubic surface passing through L∗ and that some vertices of L∗ are singular
points for S. An L-set L′ := (m1, . . . ,m5) ⊂ S is called a singular L-set if the same vertices of L′ are singular
points for S; i.e. if li ∩ lj is singular, then also mi ∩mj is singular.

In order to show that w1 and w2 are projectively equivalent, we compute all the lines of w2 (their
number is 15) and collect all the singular L-sets of the generic element of this family (their number is
144). Successively we compute the matrix A which maps L∗(⊆ w1) into a fixed singular L-set (⊆ w2), we
move w1 by the change of coordinates A (obtaining, say A(w1)) and we check if there exists a solution in
a, b, d, a1, b1, g1 to the equation A(w1) = w2. In this way, choosing a suitable singular L-set of lines, we
find the above transformation and the above matrix A0. (Note that the determinant of A0 is contained in
the degenerate locus of w2, hence it is easy to see that the projectivity A0 is defined exactly outside the
degenerate loci of w1 and w2).

In the sequel the two dimensional linear space given by w2 will be denoted by P2
C and its generic element

by T19(a, b, g).
Concerning the condition d = g (arising in 6.4 i)) imposed on the cubic surfaces of P3

C , it gives in general
a family of cubic surfaces with two singular points, (hence considered in ii)), unless g = 2a. In this case the
two singular points are coincident and we get the following family of cubic surfaces, singular only at C and
having 10 lines:

T16(a, b) : 2ax(y − z)(x− y + z + t) + b(t− x)(yt+ xz) = 0

which will be denoted by P1
C . Its degenerate locus is defined by ab = 0 and consists only of two reducible

c.ss.
Concerning the case ii), the two conditions a = d and d = 0 give rise to two one–dimensional families

of cubic surfaces which are projectively equivalent (one can see this with the same techniques used to show
that w1 and w2 are p.e.). Hence we define P1

C,D to be one of the two families (e.g. the second one) whose
equation is:

T17(a, b) : 2a(x− y)(x+ t)(y − z) + b(x− t)(yt+ xz) = 0.

Case iii) of Proposition 6.4: the condition b = −2a gives precisely one cubic surface with 3 singular
points (the points C,D,E) which is:

T14 : x2y − 2x2z − xy2 + xyz − y2t+ yzt+ yt2 = 0.

In this way, the above arguments, together with 6.1 and 6.4, give the Proof of Theorem 1.9.

Now we summarize the properties of the obtained families of type Ps, by listing their degenerate loci
Σ(Ps), the number of singularities and lines contained in any surface of Ps \Σ(Ps) and the number of singular
L-sets of the general element of each family.
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Finally we list also the stabilizer groups Stab(S) of the general surface S of each family Ps. In order to
compute these groups we proceed as usual: clearly Stab(S) is contained in the set of all matrices, say gL′ ,
which map L∗ into another singular L-set, say L′, of S. Thus it is enough to compute all the singular L-sets:
{L1, . . . , Li} and the corresponding matrices gL1

, . . . , gLi
; among them we choose those that stabilize S.

c.s. equations ♯ sing’s ♯ lines deg.locus ♯ sing. L-sets stabilizer

T21(a, b, d, g) eq1 1 21 Σ1 720 Id

T20(a, b, d) eq2 2 16 Σ2 48 S2(g
(20)
2 )

T19(a, b, g)
eq1
2a− d = 0

1 15 Σ′
1 144 Id

T18(a, b) eq3 3 12 Σ3 12 S2(g
(18)
2 ) ×

〈

g
(18)
3

〉

T17(a, b) eq2, d = 0 2 11 Σ′
2 12 Id

T16(a, b)
eq1
d− g = 0
2a− g = 0

1 10 Σ′′
1 8 S2(g

(16)
2 )

T15 eq4 4 9 − 24 S4(g
(15)
2 , g

(15)
4 )

T14
eq3
2a+ b = 0

3 8 − 2 S2(g
(14)
2 )

where
Σ′

1 : bg(a− g)(2a− g)(2a+ b− g) = 0, Σ′
2 : ab(2a+ b) = 0, Σ′′

1 : ab = 0

and

g
(20)
2 :=







2d(a− d) 0 0 0
−(b− d)(a− d) 2(a− d)2 −2(a− d)2 (a− d)(b + d)

−a(b− d) 2a(a− 2d) −2(a− d)2 a(b+ d)
0 0 0 2d(a− d)







g
(18)
2 :=







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 −1 1 1






, g

(18)
3 :=







(a+ b)(2a+ b) 0 0 0
(a+ b)a −(a+ b)2 (a+ b)2 (a+ b)2

−a2 (3a+ 2b)a (a+ b)2 −(a+ b)a
(2a+ b)a −(2a+ b)2 0 0







g
(16)
2 :=







2a 0 0 0
0 2a 0 0

b− 2a 4a −2a −b− 2a
0 0 0 2a






,

g
(15)
2 :=







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1






, g

(15)
4 :=







0 1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0






, g

(14)
2 :=







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 −1 1 1







The study of the orbit of the general element of each family Ps introduced above is similar to that
described in the case of smooth c.ss. (see Section 4) and in the case of the family T13(p, q) (see Section 5,
third example). Let S be the general element of one of the families Ps listed in the above table and G be the
group of the permutations of the lines of S (hence preserving their incidence relations and singular points):
since S is generic, we can assume that G depends only on Ps.
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Here the whole group G can be embedded in PGL4 (while we recall that in the case of smooth c.ss. only
an index two subgroup of E6 could be considered as a group of projectivities). This is essentially due to the
fact that the map

G ∋ g 7→ g(L∗)

is a one–to–one correspondence between G and the set of singular L-sets of S. Indeed, one can directly
verify that, taking the five lines of L∗, computing res (li, lj) and the residual lines of each couple of incident
lines arising in this way, one obtains all the 21 (resp. 16, . . . , 8) lines of S. This means that the choice of a
singular L-set induces a labeling on all the lines of S, i.e. determines an element of G.
Then we can proceed as in the case of smooth c.ss. and define an anti–monomorphism G −→ PGL4 by
g 7→ A−1

g , where Ag is the unique projectivity mapping L∗ to g(L∗).
In this way G acts on (an open subset of) Ps via the map

G× Ps −→ Ps, given by (g, S) 7→ A−1
g (S)

so the intersection of the orbit OS of S (under the action of PGL4) with Ps is given by:

OS ∩ Ps = OG
S ∩ Ps = OG/Stab(S)

S ∩ Ps.

Therefore

♯ (OS ∩ Ps) =
♯ {sing. L-sets}

|Stab(S)|
and this number can be computed from the above table.
Finally, since each stabilizer listed above is a finite group, then the orbit OS of the general element S ∈ Ps

has dimension 15.
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c.s. singularities rational map matrix six points

T1 (1, 0, 0, 0)











x = vu2 + w3

y = −v3

z = −v2w
t = −v2u

(1, 0, 0)6

T2
(0, 0, 0, 1)
(1, 0, 0, 0)











x = vu2

y = v2u
z = uvw
t = −uw2 − v3





y x 0
−t y z
z 0 y





(1, 0, 0)2

(0, 0, 1)4

T3

(0, 0, 0, 1)
(1, 0, 0, 0)
(0, 0, 1, 0)











x = uw2

y = uvw
z = uvw + v3

t = u2w





y x 0
0 y t

z − y 0 y





(1, 0, 0)3

(0, 0, 1)3

T4 (0, 0, 0, 1)











x = (v − w)uv
y = (v − w)v2

z = (v − w)vw
t = u2v − u2w − uv2 + uw2 + v3





t x y
y + z −y 2x+ t
y 0 x+ y − z





(1, 0, 0)4

(0, 0, 1)
(1, 0, 1)

T5 (0, 0, 0, 1)

{

α = (uw + v2)

β = w2





y z x
0 −y z
−x 0 t





(1, 0, 0)5

(0, 1, 0)

T6
(0, 0, 1, 0)
(1, 0, 0, 0)

{

α = w2

β = (u+ v + w)u





0 −y z
x+ t t y
−x 0 t





(1, 0, 0)
(0, 1, 0)3

(1,−1, 0)2

T7

(0, 0, 0, 1)
(0, 0, 1, 0)
(0, 1, 1, 0)

{

α = (u− w) (v − w)

β = (2w − u− v)w





z x+ y 2 x+ y
y y z
−x 0 t





(1, 0, 0)2

(0, 1, 0)2

(1, 1, 1)2

T8

(0, 0, 0, 1)
(0, 0, 1, 1)
(1, 0, 0, 1)

{

α = uw − v2 + 2vw − 2w2

β = (u− w) (v − w)





0 z − y z
x− y z − t y
x −t x− t





(1, 0, 0)2

(0, 1, 0)
(1, 1, 1)3

T9 (0, 0, 0, 1)

{

α = uw − v2 + vw − w2

β = (v − w)w





y z x+ y
0 z − y z
x t t





(1, 0, 0)4

(0, 1, 0)
(1, 1, 1)

T10 (0, 0, 0, 1)

{

α = −uw − v2 + 2vw

β = (v − w)w





y x− z x
0 y z
−x 2x t





(1, 0, 0)4

(0, 1, 0)
(1, 1, 1)

T11 (0, 0, 1, 0)

{

α = w2

β = u2 + uv − uw − vw − w2





0 y z
x− t x− t y − x
x 0 t





(1, 0, 0)
(0, 1, 0)3

(1,−1, 0)2

T12
(0, 1, 1, 0)
(0, 0, 0, 1)

{

α = (u− v) (v − w)

β = uv − 2uw + w2





0 −y z
y − z y − z + t x− 2t
x 0 t





(1, 0, 0)2

(0, 1, 0)
(1, 1, 1)3

T13(p, q)
(0, 0, 0, 1)
(0, 1, 1, 0)

{

α = q (v − w) (2u− v − w)

β = (pu+ qv − (p+ q)w)w





(y − z)q yq (y − z)q
3(y − z)q (2y − x+ z)q xp
t− x 0 t





(1, 0, 0)2

(0, 1, 0)
(1, 1, 1)
(1, 2, 0)
(p+ 2q, p+ q, 3q)

Table 1
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E1 = [0, 0, 1, 0, 0, 0], G4 = [0, 0, 0, 0, 0, 1], E2 = [0, 0, 0, 1, 0, 0]

G3 = [1, 1, 0, 0,−1,−1], E3 = [0, 1,−1, 1,−1, 0]

G5 = [c2, ce, 0, 0, ce, e2]
G6 = [c2, cf, 0, 0, cf, f2]
F24 = [0, 0, 0, bc− c2 + ef,−cd+ ef + c2, c(e+ f − d)]
F14 = [0, bc+ c2 + ef,−c2 − cd+ ef, 0, 0, (−b+ e+ f)c]
F34 = [0,−bc+ c2 − ef, c2 + cd− ef,−bc+ c2 − ef, c2 + cd− ef, c(d+ b)]
F13 = [bc− c2 + ef, bc− c2 + ef, (c− e)(c− f), 0, bc− ce− cf + 2ef, bc− ce− cf + 2ef ]
F15 = [c(bc− c2 + ef), e(bc− c2 + ef), (c− e)(cd− cf − ef), 0, c2(e− f − b), ce(e− f − b)]
F16 = [c(bc− c2 + ef), f(bc− c2 + ef), (c− f)(cd− ce− ef), 0, c2(f − e− b), cf(f − e− b)]
F25 = [(c2 + cd− ef)c, (d− e+ f)c2, 0,−(c+ e)(bc− cf + ef), (c2 + cd− ef)e, (d− e+ f)ce]
F26 = [(c2 + cd− ef)c, (d− f + e)c2, 0,−(c+ f)(bc− ce+ ef), (c2 + cd− ef)f, (d− f + e)cf ]
F23 = [c2 + cd− ef,−cd+ ce+ cf + 2 ef, 0, (c+ e)(c+ f),−c2 − cd+ ef, cd− ce− cf − 2 ef ]
F35 = [c(bc− cd+ 2 ef), c2f − c2d+ bce+ e2f, (c− e)(cd− cf − ef),

(c+ e)(bc− cf + ef), c2f − bc2 − cde+ e2f, ce(2f − d− b)]
F36 = [c(bc− cd+ 2 ef), c2e− c2d+ bcf + ef2, (c− f)(cd− ce− ef),

(c+ f)(bc− ce+ ef), c2e− bc2 − cdf + ef2, cf(2e− b− d)]
E5 = [0, (c− f)(bc− cf + ef)(cd− cf − ef), (f − c)(cd− cf − ef)2,−(c+ f)(bc− cf + ef)2,

(c+ f)(bc− cf + ef)(cd− cf − ef), 2(bc− cf + ef)(cd− cf − ef)f ]
E6 = [0, (c− e)(bc− ce+ ef)(cd− ce− ef), (e− c)(cd − ce− ef)2,−(c+ e)(bc− ce+ ef)2,

(c+ e)(bc− ce+ ef)(cd− ce− ef), 2(bc− ce+ ef)(cd− ce− ef)e]
F56 = [c2(bc− cd+ 2ef),−bc2d+ bc2f + bc2e− c2ef + fe2c− cdef + bcef + f2ec+ e2f2,

(cd− ce− ef)(cd− cf − ef),−(bc− cf + ef)(bc− ce+ ef),
c2ef − c2df − c2de+ bc2d+ fe2c+ f2ec+ cdef − bcef − e2f2, (bc− cd+ 2ef)ef ]

E4 = [2(c2 + cd− ef)(bc− c2 + ef)c2, (c2 + cd− ef)(bc− c2 + ef)(c2 + ce+ cf − ef),
(c2 + cd− ef)2(c− e)(c− f),−(c+ e)(c+ f)(bc− c2 + ef)2,
−(c2 + cd− ef)(c2 − ce− cf − ef)(bc− c2 + ef), 2(c2 + cd− ef)(bc− c2 + ef)ef ]

F45 = [0, (c+ f)(c− f)(cd− cf − ef)(bc− c2 + ef), (c− f)2(c2 + cd− ef)(cd− cf − ef),
(c+ f)2(bc− cf + ef)(−bc+ c2 − ef),−(c+ f)(c− f)(c2 + cd− ef)(bc− cf + ef),
−(c+ f)(c− f)(bc2 + bcf + c2d− 2c2f − cdf + 2ef2)e]

F46 = [0, (c+ e)(c− e)(cd− ce− ef)(bc− c2 + ef), (c− e)2(c2 + cd− ef)(cd− ce− ef),
(c+ e)2(bc− ce+ ef)(−bc+ c2 − ef),−(c+ e)(c− e)(c2 + cd− ef)(bc− ce+ ef),
−(c+ e)(c− e)(bc2 + bce+ c2d− 2c2e− cde+ 2e2f)f ]

G1 = [(bc− c2 + ef)2(bc− cd+ 2ef), (bc− c2 + ef)(bc− ce− cf + 2ef)(bc− cd+ 2ef), 0,
2(bc− c2 + ef)(bc− cf + ef)(bc− ce+ ef),
−(bc− c2 + ef)(b2c2 + bc2d− bc2e− bc2f − c2de− c2df + 2c2ef + 2cdef − 2e2f2),
−(bc− ce− cf + 2ef)(b2c2 + bc2d− bc2e− bc2f − c2de− c2df + 2c2ef + 2cdef − 2e2f2)]

F12 = [(c2 + cd− ef)(bc− cd+ 2ef)2(−bc+ c2 − ef),
(bc− cd+ 2ef)(−2bcef − 2e2f2 + (−b− d+ 2 e)c2f + (b + d)(d− e)c2)(bc− c2 + ef), 0, 0,
(c2 + cd− ef)(bc− cd+ 2ef)(2cdef − 2e2f2 − (b+ d− 2e)c2f − (−b+ e)(b+ d)c2),
−(bc2d− bc2e− bc2f − 2bcef + c2d2 − c2de− c2df + 2c2ef − 2e2f2)
(b2c2 + bc2d− bc2e− bc2f − c2de− c2df + 2c2ef + 2cdef − 2e2f2)]

G2 = [(c2 + cd− ef)2(bc− cd+ 2 ef),
−(c2 + cd− ef)(bc2d− bc2e− bc2f − 2bcef + c2d2 − c2de− c2df + 2c2ef − 2e2f2),
2(c2 + cd− ef)(cd− ce− ef)(cd− cf − ef), 0,
−(c2 + cd− ef)(cd− ce− cf − 2ef)(bc− cd+ 2 ef),
(cd− ce− cf − 2ef)(bc2d− bc2e− bc2f − 2bcef + c2d2 − c2de− c2df + 2c2ef − 2e2f2)]

Table 2
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