
LCD DISPLAY

We always use devices made up of Liquid Crystal Displays (LCDs) like computers,

digital watches, and also DVD and CD players. They have become very common and have

taken a giant leap in the screen industry by clearly replacing the use of Cathode Ray Tubes

(CRT). CRT draws more power than LCD and is also bigger and heavier. All of us have seen

an LCD, but no one knows the exact working of it. Let us take a look at the working of an

LCD.

Here we are using alphanumeric LCD 16×2. A 16×2 LCD display is a very basic module and

is very commonly used in various devices and circuits. These modules are preferred over

seven segments and other multi-segment LEDs.

The reasons are: LCDs are economical; easily programmable; have no limitation of

displaying special & even custom characters (unlike in seven segments), animations, and so

on.

A 16×2 LCD means it can display 16 characters per line and there are 2 such lines. In this

LCD each character is displayed in a 5×7 pixel matrix. This LCD has two registers, namely,

Command and Data. The command register stores the command instructions given to the

LCD. A command is an instruction given to LCD to do a predefined task like initializing it,

clearing its screen, setting the cursor position, controlling the display, etc. The data register

stores the data to be displayed on the LCD. The data is the ASCII value of the character to be

displayed on the LCD.

16×2 LCD Pin Diagram

Pin Description

 Pin No Function Name

1 Ground (0V) Ground

2 Supply voltage; 5V (4.7V – 5.3V) Vcc

https://www.electronicsforu.com/technology-trends/learn-electronics/16x2-lcd-pinout-diagram
https://embetronicx.com/wp-content/uploads/2017/06/a.png
https://embetronicx.com/wp-content/uploads/2017/06/a.png

3 Contrast adjustment; through a variable resistor VEE

4 Selects command register when low; and data register when high Register Select

5 Low to write to the register; High to read from the register Read/write

6 Sends data to data pins when a high-to-low pulse is given Enable

7

8-bit data pins

DB0

8 DB1

9 DB2

10 DB3

11 DB4

12 DB5

13 DB6

14 DB7

15 Backlight VCC (5V) Led+

16 Backlight Ground (0V) Led-

The LCD display module requires 3 control lines as well as either 4 or 8 I/O lines for the data

bus. The user may select whether the LCD is to operate with a 4-bit data bus or an 8-bit data

bus. If a 4-bit data bus is used the LCD will require a total of 7 data lines (3 control lines plus

the 4 lines for the data bus). If an 8-bit data bus is used the LCD will require a total of 11 data

lines (3 control lines plus the 8 lines for the data bus).

The three control lines are referred to as EN, RS, and RW.

The EN line is called “Enable.” This control line is used to tell the LCD that you are sending

it data. To send data to the LCD, your program should make sure this line is low (0) and then

set the other two control lines and/or put data on the data bus. When the other lines are

completely ready, bring EN high (1) and wait for the minimum amount of time required by

the LCD datasheet (this varies from LCD to LCD), and end by bringing it low (0) again.

The RS line is the “Register Select” line. When RS is low (0), the data is to be treated as a

command or special instruction (such as a clear screen, position cursor, etc.). When RS is

high (1), the data being sent is text data which should be displayed on the screen. For

example, to display the letter “T” on the screen you would set RS high.

The RW line is the “Read/Write” control line. When RW is low (0), the information on the

data bus is written to the LCD. When RW is high (1), the program is effectively querying (or

reading) the LCD. Only one instruction (“Get LCD status”) is a read command. All others are

write commands–so RW will almost always be LOW.

Finally, the data bus consists of 4 or 8 lines (depending on the mode of operation selected by

the user). In the case of an 8-bit data bus, the lines are referred to as DB0, DB1, DB2, DB3,

DB4, DB5, DB6, and DB7.

Interfacing LCD with Microcontroller –

CIRCUIT DIAGRAM

RS is connected to Port 0.0 (P0.0)

RW is connected to Port 0.1 (P0.1)

EN is connected to Port 0.2 (P0.2)

Data lines are connected to Port 2 (P2)

LCD Interfacing with 8051 Microcontroller –

Programming

Send Data

To send data on the LCD, data is first written to the data pins with R/W = 0 (to specify the

write operation) and RS = 1 (to select the data register). A high to low pulse is given at EN pin

when data is sent. Each write operation is performed on the positive edge of the Enable signal.

void dat(unsigned char b)

{

lcd_data=b;

rs=1;

rw=0;

en=1;

lcd_delay();

en=0;

}

Send String

We cannot send more than 8 bits at the same time. Because data lines are only having 8 bits.

So how we can send string? Any guess? Yeah, you are correct. We have to send the string by

character. See this code.

void show(unsigned char *s)

{

while(*s) {

dat(*s++);

}

}

Send Command

To send a command on the LCD, a particular command is first specified to the data pins with

R/W = 0 (to specify the write operation) and RS = 0 (to select the command register). A high

to low pulse is given at the EN pin when data is sent.

void cmd(unsigned char a)

{

lcd_data=a;

rs=0;

rw=0;

en=1;

lcd_delay();

en=0;

}

LCD Initializing

To initialize the LCD we have to use certain commands.

void lcd_init()

{

cmd(0x38);

cmd(0x0e);

cmd(0x01);

cmd(0x06);

cmd(0x0c);

cmd(0x80);

}

8051 – Keypad Interfacing
Components Required

 4×4 Keypad or 3×4 Keypad (Here we will discuss both codes)
 LCD Module (To print the Keys pressed)
 8051 Microcontroller

4×4 Matrix Keypad Interfacing

LCD

 RS – P3.5
 RW – P3.6
 EN – P3.7
 Data Lines – P2

Keypad

 R1 – P1.0
 R2 – P1.1
 R3 – P1.2
 R4 – P1.3
 C1 – P1.4
 C2 – P1.5
 C3 – P1.6
 C4 – P1.7

Code

This code might be looking big. But concept-wise it is very easy. Please go through
this code.

#include<reg51.h>

#define lcd P2

sbit rs=P3^5;

sbit rw=P3^6;

sbit en=P3^7;

sbit r1=P1^0;

sbit r2=P1^1;

sbit r3=P1^2;

sbit r4=P1^3;

sbit c1=P1^4;

sbit c2=P1^5;

sbit c3=P1^6;

sbit c4=P1^7;

void lcd_init();

void cmd(unsigned char);

void dat(unsigned char);

lcd_string(unsigned char *);

void delay(unsigned int);

void keypad(void);

void main()

{

lcd_init();

while(1) {

cmd(0x80);

lcd_string("Enter the key:");

cmd(0xc7);

keypad();

}

}

void keypad()

{

c1=c2=c3=c4=1;

r1=0;r2=1;r3=1;r4=1;

if(c1==0){

while(c1==0);

dat('7');

} else if(c2==0) {

while(c2==0);

dat('8');

} else if(c3==0) {

while(c3==0);

dat('9');

} else if(c4==0) {

while(c4==0);

dat('/');

}

r1=1;r2=0;r3=1;r4=1;

if(c1==0){

while(c1==0);

dat('4');

} else if(c2==0) {

while(c2==0);

dat('5');

} else if(c3==0) {

while(c3==0);

dat('6');

} else if(c4==0) {

while(c4==0);

dat('*');

}

r1=1;r2=1;r3=0;r4=1;

if(c1==0){

while(c1==0);

dat('1');

} else if(c2==0) {

while(c2==0);

dat('2');

} else if(c3==0) {

while(c3==0);

dat('3');

} else if(c4==0) {

while(c4==0);

dat('-');

}

r1=1;r2=1;r3=1;r4=0;

if(c1==0){

while(c1==0);

cmd(0x01);

} else if(c2==0) {

while(c2==0);

dat('0');

} else if(c3==0) {

while(c3==0);

dat('=');

} else if(c4==0) {

while(c4==0);

dat('+');

}

}

void lcd_init()

{

cmd(0x38);

cmd(0x0e);

cmd(0x06);

cmd(0x01);

}

void cmd(unsigned char x)

{

lcd=x;

rs=0;

rw=0;

en=1;

delay(1000);

en=0;

}

void dat(unsigned char y)

{

lcd=y;

rs=1;

rw=0;

en=1;

delay(1000);

en=0;

}

lcd_string(unsigned char *s)

{

while(*s)

dat(*s++);

}

void delay(unsigned int z)

{

unsigned int i;

for(i=0;i<=z;i++);

}

Code Explanation

I assumed that you already know about LCD interfacing. Now look at these lines in
keypad function,

c1=c2=c3=c4=1;

r1=0;r2=1;r3=1;r4=1;

if(c1==0){

while(c1==0);

dat('7');

} else if(c2==0) {

while(c2==0);

dat('8');

} else if(c3==0) {

while(c3==0);

dat('9');

} else if(c4==0) {

while(c4==0);

dat('/');

}

In this code, I’m taking row as output and column as input.

1. In the first line, I’m assigning high to all columns. (c1=c2=c3=c4=1;)
2. Then I’m assigning the first row to zero and keeps the remaining row as high.

(r1=0;r2=1;r3=1;r4=1;)
3. Then I’m checking the first column is zero or not. If it is zero then I should wait

until that button depressed. Then I can know the pressed key.
4. If not I’m checking the next column. Like that, I’m checking all rows and

columns.
5. If no keys pressed in row1, then I’m making row2 as zero. The remaining rows

are high. Then follow the above steps.

Output

#include<reg51.h>

#define lcd P2

sbit rs=P3^5;

sbit rw=P3^6;

sbit en=P3^7;

sbit r1=P1^0;

https://embetronicx.com/wp-content/uploads/2017/07/output1.gif

sbit r2=P1^1;

sbit r3=P1^2;

sbit r4=P1^3;

sbit c1=P1^4;

sbit c2=P1^5;

sbit c3=P1^6;

void lcd_init();

void cmd(unsigned char);

void dat(unsigned char);

lcd_string(unsigned char *);

void delay(unsigned int);

void keypad(void);

void main()

{

lcd_init();

while(1) {

cmd(0x80);

lcd_string("Enter the key:");

cmd(0xc7);

keypad();

}

}

void keypad()

{

c1=c2=c3=1;

r1=0;r2=1;r3=1;r4=1;

if(c1==0){

while(c1==0);

dat('1');

} else if(c2==0) {

while(c2==0);

dat('2');

} else if(c3==0) {

while(c3==0);

dat('3');

}

r1=1;r2=0;r3=1;r4=1;

if(c1==0){

while(c1==0);

dat('4');

} else if(c2==0) {

while(c2==0);

dat('5');

} else if(c3==0) {

while(c3==0);

dat('6');

}

r1=1;r2=1;r3=0;r4=1;

if(c1==0){

while(c1==0);

dat('7');

} else if(c2==0) {

while(c2==0);

dat('8');

} else if(c3==0) {

while(c3==0);

dat('9');

}

r1=1;r2=1;r3=1;r4=0;

if(c1==0){

while(c1==0);

dat('*');

} else if(c2==0) {

while(c2==0);

dat('0');

} else if(c3==0) {

while(c3==0);

dat('#');

}

}

void lcd_init()

{

cmd(0x38);

cmd(0x0e);

cmd(0x06);

cmd(0x01);

}

void cmd(unsigned char x)

{

lcd=x;

rs=0;

rw=0;

en=1;

delay(1000);

en=0;

}

void dat(unsigned char y)

{

lcd=y;

rs=1;

rw=0;

en=1;

delay(1000);

en=0;

}

lcd_string(unsigned char *s)

{

while(*s)

dat(*s++);

}

void delay(unsigned int z)

{

unsigned int i;

for(i=0;i<=z;i++);

}

	LCD DISPLAY
	16×2 LCD Pin Diagram
	Pin Description

	Interfacing LCD with Microcontroller – CIRCUIT DIAGRAM
	LCD Interfacing with 8051 Microcontroller – Programming
	Send Data
	Send String
	Send Command
	LCD Initializing

	8051 – Keypad Interfacing
	Components Required
	4×4 Matrix Keypad Interfacing
	Code
	Code Explanation
	Output

