

SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 19ECB212 – DIGITAL SIGNAL PROCESSING

II YEAR/ IV SEMESTER

UNIT 4 – FINITE WORD LENGTH EFFECTS

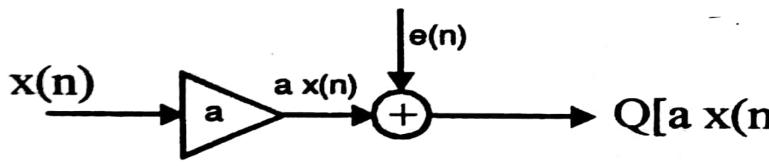
TOPIC – ROUNDOFF NOISE POWER, LIMIT CYCLES IN RECURSIVE SYSTEMS & OVERFLOW LIMIT CYCLE

6-Jun-24

- In realization structures of IIR Systems, multipliers are used to multiply the signal by constants. The output of the multipliers i.e., the product are quantized to finite word length in order to store them in registers and to be used in subsequent calculations
- In fixed point arithmetic, the multiplication of two b-bit numbers results in a product of length 2b-bits. If the word length of the register used to store the result is b-bits then it is necessary to quantize the product (result) to b-bits. The error due to quantization of the output of multiplier is referred to as **Product Quantization Error**

- In digital system the product quantization is performed by rounding due to the following desirable characteristics of rounding
- In rounding the error signal is independent of the type of arithmetic employed
- The mean value of error signal due to rounding is zero
- The variance of error signal due to rounding is the least
- The analysis of product quantization error is similar to the analysis of quantization error due to A/D process
- But in product quantization error analysis it is necessary to define the noise transfer function, which depends on the structure of the digital network

- The Noise Transfer Function (NTF) is defined as the transfer function from the noise source to the filter output (i.e., NTF is the transfer function obtained by treating the noise source as actual input)
- The model of the multiplier of a digital network using fixed point arithmetic as shown. The multiplier is considered as an infinite precision multiplier. Using an adder the error signal is added to the output of the multiplier so that the output of adder is equal to the quantized product
- Therefore the output of finite word length multiplier can be expressed as



Q[a x(n)] = a x(n) + e(n)

Quantized Product = Q[a x(n)] = a x(n) + e(n)

- Where a x(n) = Unquantized Product
- e(n) = Product quantization error signal
- The product quantization error signal is treated as a random process with uniform probability density function. The following assumptions are made regarding the statistical independence of the various noise sources in the digital filter
- Any two different samples from the same noise source are considered
- Any two different noise sources, When considered as random processes are uncorrelated
- Each noise source is uncorrelated with the input sequence \bullet ROUND OFF NOISE POWER, LIMIT CYCLES IN RECURSIVE SYSTEMS & OVERFLOW LIMIT CYCLE /19ECB212 – DIGITAL SIGNAL 6-Jun-24 PROCESSING/J.PRABAKARAN/ECE/SNSCT

- **Zero Input Limit Cycles:** In recursive systems, when the input is zero or some nonzero constant value, the nonlinearities due to finite precision arithmetic operations may cause periodic oscillations in the output
- During periodic oscillations, the output y(n) of a system will oscillate between a finite positive and negative value for increasing n or the output will become constant for increasing n. Such oscillations are called **limit cycles**. These oscillations are due to round-off errors in multiplication and overflow in addition
- In recursive systems, if the system output enters a limit cycle, it will continue to remain in limit cycle even when the input is made zero. Hence these limit cycles are also called **Zero Input Limit Cycles**

- The system output remains in limit cycle until another input of sufficient magnitude is applied to drive the system out of limit cycle
- Consider the difference equation of first order system with only pole as shown y(n) = a y(n-1) + x(n)
- The system has one product [a y(n-1)]. If the product is quantized to finite word length then the response y(n) will deviate from actual value. Let y'(n) be the response of the system when the product is quantized in each recursive realization

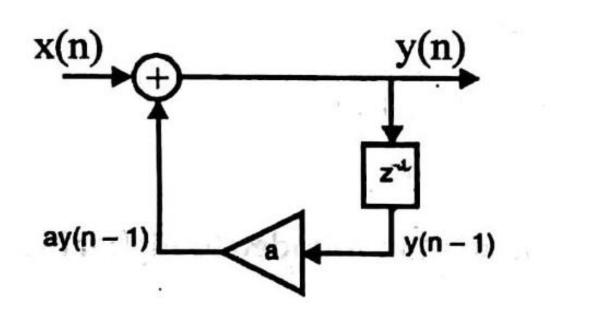
y'(n) = Q[a y'(n-1)] + x(n)

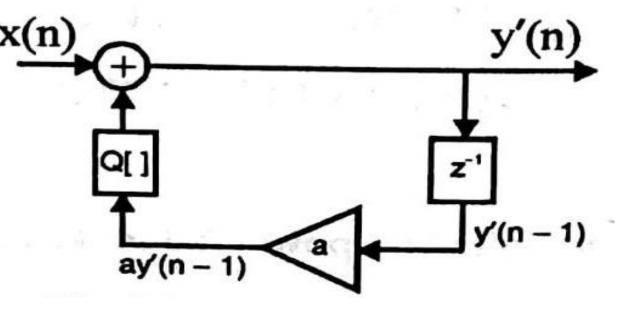
- Where, Q [] stands for quantization operation
- Q[a y'(n-1)] = Quantized value of the product a y'(n-1)

6-Jun-24

ROUND OFF NOISE POWER, LIMIT CYCLES IN RECURSIVE SYSTEMS & OVERFLOW LIMIT CYCLE /19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

- In the first order system with only pole, the coefficient "a" will be the pole of the system. Let us examine the nature of response of first-order system for an impulse input and various values of poles
- Choose Sign-magnitude representation for binary product and response. Let the product be quantized to four bit binary (excluding sign bit) by upward rounding.





Ideal System

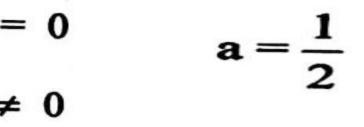
ROUND OFF NOISE POWER, LIMIT CYCLES IN RECURSIVE SYSTEMS & OVERFLOW LIMIT CYCLE /19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

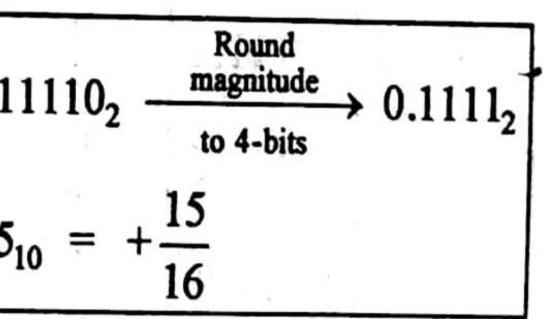
Nonlinear system due to product quantization

 $x(n) = \frac{15}{16}$; for n = 0Let, y'(n) = 0; for n < 0= 0; for $n \neq 0$ When n = 0, y'(n) = y'(0) = Q[ay'(n-1)] + x(n) = Q[ay'(-1)] + x(0) $= Q\left[\frac{1}{2} \times 0\right] + \frac{15}{16} = Q[0] + \frac{15}{16} = 0 + \frac{15}{16}$ $= 0.9375_{10} = +\frac{15}{16}$ $+.11110_2 \xrightarrow{\text{Add sign}} 0.11110_2$ Convert to $+.9375_{10}$ binary $\frac{\text{Convert to}}{10} + .9375_{10} = +\frac{15}{10}$ Extract 0.1111, sign bit decimal

ROUND OFF NOISE POWER, LIMIT CYCLES IN RECU JRSIVE SYSTEMS & OVERFLOW LIMIT CYCLE /19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

6-Jun-24





- The limit cycles shown in table are due to quantization of the product by rounding. It can be shown that most of the limit cycles can be eliminated if quantization is performed by truncation, but truncation is not preferred in product quantization, due to the biased errors it may introduce in the output
- In a limit cycle the amplitudes of the output are confined to a range of values, which \bullet is called the dead band of the filter
- For a first-order sys band is given by

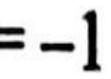
stem described by the equation,
$$y(n) = ay(n-1)+x(n)$$
, the dead
Dead band = $\pm \frac{2^{-B}}{1-|a|} = -\frac{2^{-B}}{1-|a|}$ to $\pm \frac{2^{-B}}{1-|a|}$

- In fixed point addition of two binary numbers the overflow occurs when the sum exceeds the finite word length of the register used to store the sum. The overflow in addition may lead to oscillations in the output which is referred to as **Overflow limit cycles**
- The overflow occurs when the sum exceeds the dynamic range of number system. When binary fraction format is used for computing, the dynamic range is (-1,1). The overflow is explained by considering 4-bit binary fraction number in two's complement representation
- The actual sum of + 3/8 and + 5/8 is +1 but due to overflow it becomes -1. \bullet

Let us add $+\frac{3}{8}$ and $+\frac{5}{8}$ in two's complement addition ⇒ 0.011 is a fair to 1 1 1 2 3 m **⇒** 0.101 1.000 ⇒

ROUND OFF NOISE POWER, LIMIT CYCLES IN RECURSIVE SYSTEMS & OVERFLOW LIMIT CYCLE /19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

6-Jun-24

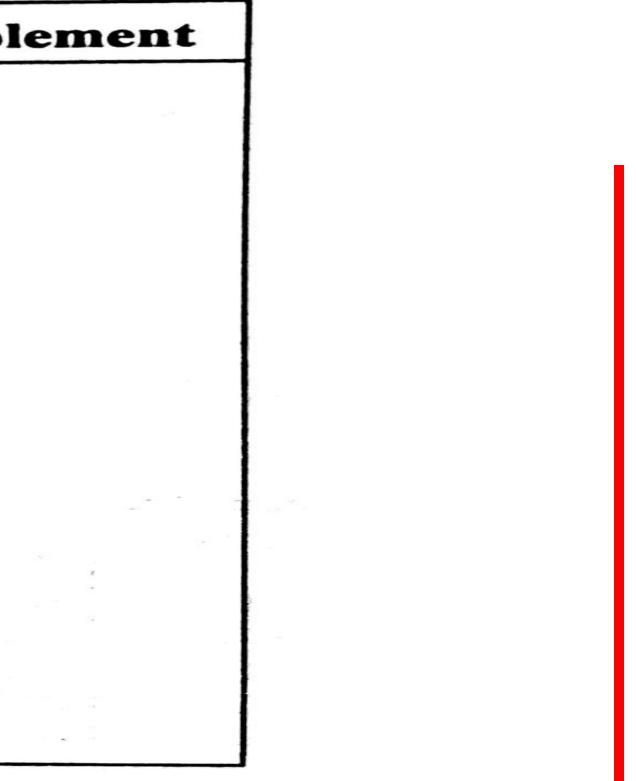


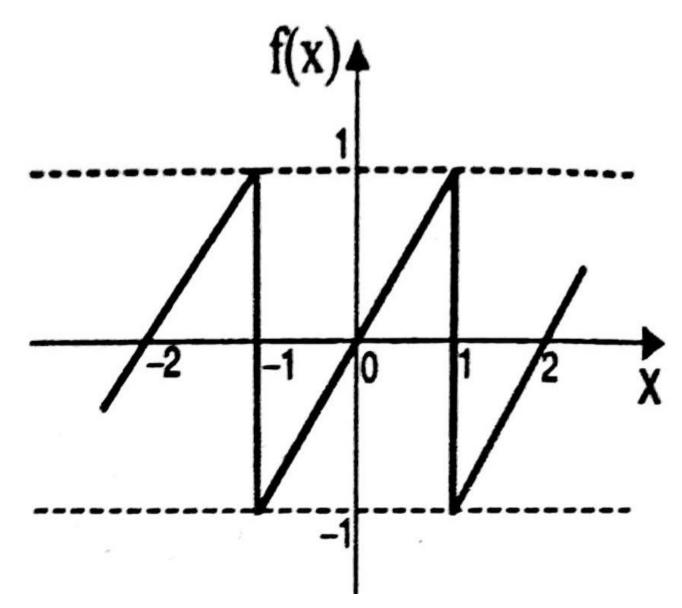
FOUR -BIT TWO'S COMPLEMENT NUMBER

Two's comp
0.000
0.001
0.010
0.011
0.100
0.101
0.110
0.111
1.000
1.001
1.010
1.011
1.100
1.101
1.110
1.111

ROUND OFF NOISE POWER, LIMIT CYCLES IN RECURSIVE SYSTEMS & OVERFLOW LIMIT CYCLE /19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

6-Jun-24

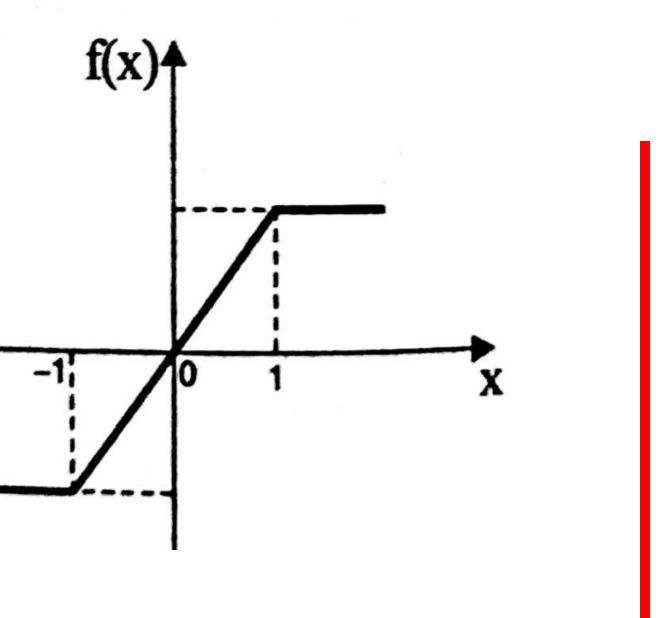




I/O Characteristics of two's complement adder

6-Jun-24

ROUND OFF NOISE POWER, LIMIT CYCLES IN RECURSIVE SYSTEMS & OVERFLOW LIMIT CYCLE /19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT



Characteristics of Saturation adder

- The overflow oscillations can be eliminated if saturation arithmetic is performed. In saturation arithmetic, when an overflow is sensed, the output (sum) is set equal to maximum allowable value and when an overflow is sensed, the output (sum) is set equal to minimum allowable value
- The saturation arithmetic introduce nonlinearity in the adder and the signal distortion due to this nonlinearity is small if the saturation occurs infrequently
- **Scaling to Prevent Overflow:** The two methods of preventing overflow are lacksquaresaturation arithmetic and scaling the input signal to the adder. In saturation arithmetic, undesirable distortion is introduced. Inorder to limit the signal distortion due to frequent overflows, the input signal to the adder can be scaled

SCALING TO PREVENT OVERFLOW

- Let x(n) = Input to the system
- $h_k(n) =$ Impulse response between the input and output of node-k
- $Y_k(n)$ = response of the system at node-k ullet

$$y_k(n) = h_k(n) * x(n) = \sum_{m = -\infty}^{+\infty} h_k(m)$$

On taking absolute value of above equation, we get ${\color{black}\bullet}$

$$\left| \mathbf{y}_{\mathbf{k}}(\mathbf{n}) \right| = \left| \sum_{\mathbf{m} = -\infty}^{+\infty} \mathbf{h}_{\mathbf{k}}(\mathbf{m}) \mathbf{x}(\mathbf{n} - \mathbf{m}) \right| = \sum_{\mathbf{m} = -\infty}^{+\infty} \mathbf{h}_{\mathbf{k}}(\mathbf{m}) \mathbf{x}(\mathbf{n} - \mathbf{m}) = \mathbf{n}_{\mathbf{m}} = -\infty$$

x(n - m)

$|\mathbf{h}_{\mathbf{k}}(\mathbf{m})||\mathbf{x}(\mathbf{n}-\mathbf{m})|$

ASSESSMENT

- What are limit cycles?
- The two types of limit cycles are ------ and ------2.
- Define Zero input limit cycle. 3.
- In a limit cycle the amplitudes of the output are confined to a range of value and 4. this range of value is called ------ of the filter.
- 5. What is saturation arithmetic?
- Define overflow limit cycle. 6.
- The overflow limit cycles can be eliminated either by using ------ or by ---7.
- What is the drawback in saturation arithmetic? 8.

THANK YOU

ROUND OFF NOISE POWER, LIMIT CYCLES IN RECURSIVE SYSTEMS & OVERFLOW LIMIT CYCLE /19ECB212 – DIGITAL SIGNAL PROCESSING/J.PRABAKARAN/ECE/SNSCT

6-Jun-24

