

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) DEPARTMENT OF AEROSPACE ENGINEERING

Subject Code & Name: 23AST101 Fundamentals of Aerospace Engineering

Topic: Developments in aircraft propulsion

Developments in aircraft propulsion systems have focused on improving efficiency, reducing emissions, increasing power-to-weight ratios, and enhancing overall performance. Here are some key advancement in aircraft propulsion:

1. Turbofan Engines

- **High Bypass Ratio Turbofans:** Modern turbofans have high bypass ratios, where a larger portion of air bypasses the engine core, leading to improved fuel efficiency and quieter operation. Examples include the General Electric GE90 and Pratt & Whitney PW1000G.
- **Geared Turbofans:** These engines, such as the Pratt & Whitney PW1000G, use a gearbox to allow the fan and the turbine to operate at their optimal speeds, improving efficiency and reducing noise.

2. Turboprop Engines

• Advanced Turboprops: Modern turboprops, such as the Pratt & Whitney Canada PW150, feature improved aerodynamics, materials, and fuel systems, resulting in better fuel efficiency and performance.

3. Electric and Hybrid-Electric Propulsion

- **Electric Propulsion:** Fully electric aircraft, such as those being developed by companies like Eviation (Alice) and Pipistrel, use electric motors powered by batteries, offering zero emissions and quieter operations.
- **Hybrid-Electric Propulsion:** Hybrid-electric systems combine traditional gas turbines with electric propulsion, as seen in projects like the Airbus E-Fan X. These systems aim to improve fuel efficiency and reduce emissions.

4. Sustainable Aviation Fuels (SAF)

- **Biofuels:** Biofuels made from renewable sources like algae, used cooking oil, and agricultural waste can significantly reduce carbon emissions compared to conventional jet fuel.
- **Synthetic Fuels:** Produced from renewable electricity, water, and carbon dioxide, synthetic fuels offer a sustainable alternative with lower life-cycle emissions.

5. Open Rotor Engines

• Unducted Fan Engines: Open rotor engines, such as the Safran Open Rotor, eliminate the nacelle around the fan blades, reducing weight and drag and potentially offering significant fuel savings.

6. Supersonic and Hypersonic Propulsion

- **Supersonic Engines:** Developments in engines for supersonic aircraft, such as the Aerion AS2's GE Affinity engine, focus on reducing sonic booms and improving efficiency at high speeds.
- **Scramjets:** Hypersonic propulsion systems like scramjets (supersonic combustion ramjets) are being developed for applications in high-speed travel and space access.

7. Advanced Turbine Technologies

- Ceramic Matrix Composites (CMC): CMC materials are used in turbine blades to withstand higher temperatures, improving engine efficiency and durability.
- Adaptive Cycle Engines: Engines like the GE Adaptive Cycle Engine (ACE) can adjust their operating cycle to optimize performance for different phases of flight, offering improved fuel efficiency and versatility.

8. Distributed Propulsion

• **Distributed Electric Propulsion (DEP):** This involves using multiple small electric motors distributed along the wings or fuselage, improving aerodynamic efficiency and reducing noise. An example is NASA's X-57 Maxwell.

9. Integration with Aerodynamics

• **Boundary Layer Ingestion (BLI):** BLI propulsion systems ingest the slower air in the aircraft's boundary layer, improving overall aerodynamic efficiency and reducing fuel consumption. This concept is being explored by NASA and other organizations.

Conclusion

Advancements in aircraft propulsion are driving the aviation industry toward more efficient, environmentally friendly, and high-performance systems. These developments not only enhance the performance and sustainability of current aircraft but also pave the way for new types of air travel, including electric and hybrid-electric aircraft, supersonic jets, and potentially hypersonic vehicles. Continued research and innovation in propulsion technologies are essential for meeting the future demands of air transportation.