

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Randomized block Design (RBD) (or Two way classification

It is a two factor experiment.

Procedure :

Step 1: Null hypothesis: H.: There is no significant difference between columns and rows.

Alternative hypothesis: H. : There is a significant difference between columns and rows.

Step 2:
$$\pm$$
 Find N
 \pm Find T
 \pm Find C.F = T^2/N

Step 3:
$$\pm$$
 Find $SST = \sum x_1^2 + \sum x_2^2 + \cdots - C.F$
 \pm Find $SSC = \frac{\left(\sum x_1\right)^2 + \left(\sum x_2\right)^2}{C_1} + \cdots - C.F$
 \pm Find $SSR = \frac{\left(\sum y_1\right)^2 + \left(\sum y_2\right)^2}{r_1} + \cdots - C.F$
 \pm Find $SSE = SST - SSC - SSR$

Step 4: ANOVA table .

Source of Variation	Degree of freedom	Sum of Squares	Mean Sum of squares	Variance Tatio	Table value
Between	(c-1)	SSC	MSC = SSC C-1	F _c = MSC MSE	F (C-1,
Between rows	(~-1)	SSR	MSR = SSR	FE MSR	
Between	(r-1).x	SSE	MSE = SSE	MSE	E (7-1)

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Problem.

An experiment was designed to study the performance of 4 different detergents for cleaning of injectors.

The following "cleanliness" seadings were obtained with specially designed equipment for 12 tanks of gas distributed over 3 different models of engines.

	Engine 1	Engine 2	Engine 3	Total
Detergent		43	51	139
A	47	46	52	145
6	48	50	55	153
D	42	37	49	128
Total	182	176	207	565

Perform the ANOVA test at 0.01 level of significance whether there are differences in the detergents or in the engines.

Solution: Fix origin = 50. Subtract each element

from so.

Engine	×,	X ₂	×3	Total	X, ²	X22	×3
A (Y,)	-5	-7	+1	-11	25	49	1
B (y2)	-3	-4	2	-5	9	16	4
c (y3)	-2	o	5	3	4	0	25
D (94)	-8	-13	-1	-22	64	169	. 1
Total	- 18	-24	7	- 35	102	234	31

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Stepy: ANOVA table:

Source of Vasiation	Degree of	Sum of Squares	Mean Sum of Squares	Variance Yatio	at 14 item
Between Columns	(-1 = 3-1 = 2	SSC = 135.17	MSC = SSC C-1 = 67.585	Fe = MSC MSE	Fa(2,6) = 10.92
Between rows	7-1=4-1 =3	SSR = 110.91	MSR = 95R	Fe = MSR	F2 (316)
Between essors	((-1)(7-1)	SSE = 18.84	MSE - SSE - 3.1	mse e 11-77	= 9.7P

Staps: Decision: Since For Fx and Fx > Fx. Ho is sejected.

There is a significant difference between engines and detergents