Reg.No:				

SNS College of Technology, Coimbatore-35. (An Autonomous Institution) Internal Assessment -III Academic Year 2023-2024 (Even) Fourth Semester (Common to Agri, Auto, Food Technology, Mech)

19MAT202 – STATISTICS AND NUMERICAL METHODS (REGULATION 2019)

Time: 1.30 Hours

5.

Maximum Marks: 50

	PART – A (5 x 2 = 10 MARKS) ANSWER ALL QUESTIONS	СО	Blooms
1.	Write the inverse formula of Lagrange's interpolation .	CO4	(Rem)
2.	Given $f(0) = -2$, $f(1) = 2$ and $f(2) = 8$. Find the value of y at x=3 using Newton's interpolation formula.	CO4	(App)
3.	A curve passes through $(0, 1)$, $(0.25, 0.9412)$, $(0.5, 0.8)$ $(0.75, 0.64)$ and $(1.0, 0.5)$. Find the area between the curve, x – axis and x = 0,	CO4	(Und)
4.	x = 1 by Simpson's rule. Using Euler's method find y (0.1) if $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1.	CO5	(App)

Write down the formula for Fourth order Runge-Kutta method to solve CO5 (Rem) $\mathbf{y'} = \mathbf{f}(\mathbf{x}, \mathbf{y})$ with $\mathbf{y}(\mathbf{x_0}) = \mathbf{y_0}$.

PART –B (13+13+14 = 40 MARKS) ANSWER ALL QUESTIONS

6. a) i)Using Lagrange's Interpolation formula find y(2) from the following CO4 (App)
table.(App)
(6)

Х	0	1	3	4
у	-12	0	6	12

ii) From the following table of half-yearly premium for policies maturing CO4 (App) at different ages, estimate the premium for policies maturing at age (7)
63.

Age: x	45	50	55	60	65
Premium: y	114.84	96.16	83.32	74.48	68.48

					(OR)									
	b) i)	Compute the first derivative of y at $x=1.5$ from the table below.								(App)				
		X	1.5	2.0	2.5	3.0	3.5	4.0		(7)				
		у	3.375	7.00	13.625	24.0	38.875	59.0						
	ii)	Using Trapezoidal rule ,evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ by taking 8 intervals.								(Ana) (6)				
7.	a) i)	Compute $y(0.2)$ correct to 4 decimal places using Taylor Series								(App)				
		method		(0)										
	ii)	By applying modified Euler's method compute $y(0.1)$ with h= 0.1								(App) (7)				
		from y'	y = 1 - y	, y(0) =				(')						
					(OR)									
	b)	Apply Milne's method find y(0.8) given $\frac{dy}{dx} = x^3 + y$ and y(0) = 2,								(Ana) (13)				
y(0.2) = 2.073, $y(0.4) = ?$ and $y(0.6) = ?$ (find using Euler's method).														
0		The population of a certain town is given below, determine the rate of												
8.	a) 1)	growth of the population in 1971.							CO4	(App)				
		Year x:		1931	1941	1951	1961	1971		(7)				
		Popula thousa	nds} y:	40.62	60.80	79.95	103.56	5 132.65						
	ii)	Dividing the range into 10 equal parts, find the value of								(Ana)				
	,	π								(7)				
		$\int_{0}^{0} \sin \theta$	x dx by	Simpson's	s rule. Also	verify wi	th normal i	integration.						
					(OR)									

	Detect y(0.2),using Fourth order Runge-Kutta method, given	CO5	(Ana)
b)	$dy = y^2 - x^2$		(14)
	$\frac{dy}{dx} = \frac{y}{2} + \frac{y}{2} + \frac{y}{2} = 1$ at x=0.2.		
	$ax y^{-} + x^{-} \cdot \langle \rangle$		

Rem/Und: Remember/ Understand App: Apply Ana: Analyze Evaluate

Cre: Create