Reg.No:				

SNS College of Technology, Coimbatore-35. (An Autonomous Institution) Internal Assessment -III Academic Year 2023-2024 (Even) Fourth Semester (Common to Agri, Auto, Food Technology, Mech)

19MAT202 – STATISTICS AND NUMERICAL METHODS (REGULATION 2019)

Time: 1.30 Hours

Maximum Marks: 50

CO5

	PART – A (5 x 2 = 10 MARKS) ANSWER ALL QUESTIONS	CO	Blooms
1.	Given $f(0) = 0$, $f(1) = 1$ and $f(2) = 2$. Find the value of y at x=3 using	CO4	(App)
	Lagrange's interpolation formula.		
2.	Write Newton's forward interpolation formula and state when it is	CO4	(Rem)
	used?		
3.	A curve passes through (0, 1), (0.25, 0.9412), (0.5, 0.8) (0.75, 0.64)	CO4	(Und)
	and (1.0, 0.5). Find the area between the curve, $x - axis$ and $x = 0$,		
	x = 1 by Trapezoidal rule.		
4.	Using Euler's method solve $y' = x + y$, $y(0)=1$. Compute y at $x = 0.1$ by	CO5	(App)

taking h = 0.1.

5. State Milne's predictor-corrector method.

PART -B (13+13+14 = 40 MARKS) ANSWER ALL QUESTIONS

6. a) i) Find the missing term in the following table using Lagrange's CO4 (App) interpolation: (6)

ſ	Х	0	1	2	3	4
-	у	1	3	9	-	81

ii) The following data are taken from the stream table:

Temp: x	140	150	160	170	180
Pressure:y	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature t=142.

CO4 (App)

(7)

(Rem)

Compute f'(0) from the data: b)i)

b)

0 1 2 3 4 Х 1 2.718 7.381 20.086 54.598 y

Evaluate the integral $\int_{0}^{6} \frac{dx}{1+x^2}$ using Simpson's 1/3 rule with h=0.5. ii) CO4 (Ana) (6)

a) i) Using Taylor series method, find y(0.1) correct to three decimal CO5 (App)
places given that
$$\frac{dy}{dx} = x^2 + y^2$$
, y(0) = 1. (6)

By applying modified Euler's method compute y(0.25) with h = 0.25 CO5 ii) (App) (7)from y' = 2xy, y(0) = 1

(OR)

Apply Milne's method find y(2) if y(x) is the solution of $\frac{dy}{dx} = \frac{x+y}{2}$ CO5 (Ana) (13)given y(0) = 2, y(0.5) = 2.636, y(1) = ? and y(1.5) = ? (find using Euler's method).

The following data gives the velocity of a particle for 20 seconds at an

8. a) i) CO₄ interval of 5 seconds .find the initial acceleration using the entire data

Time(sec)	0	5	10	15	20
Velocity(m/sec)	0	3	14	69	228

ii) Dividing the range into 10 equal parts, find the value of

$$\int_{0}^{\pi} \sin x \, dx \text{ by Trapezoidal rule. Also verify with normal integration.}$$
CO4 (Ana)
(7)

(OR)

b)	Given compute y(0.2) by Fourth order Runge-Kutta method	CO5	(Ana)
	dy = 2		(14)
	$\frac{dy}{dx} = x^3 + y, y(0) = 2$		
	ax .		

Rem/Und: Remember/ Understand Eva: Evaluate **App:** Apply Ana: Analyze

Cre: Create

CO₄ (App) (7)

(App)

(7)