
SNS College of Technology, Coimbatore-35.
 (An Autonomous Institution)
 Internal Assessment -II
 Academic Year 2023-2024 (Even)

Fourth Semester
(Common to Agri, Auto, Food Technology, Mech)
19MAT202 - STATISTICS AND NUMERICAL METHODS
(REGULATION 2019)
Time: $\mathbf{1 . 3 0}$ Hours
Maximum Marks: 50

		PART - A (5 x 2 = 10 MARKS) ANSWER ALL QUESTIONS					CO	Blooms
1.		Analyze the main advantage of CRD over RBD.					CO2	(Und)
2.		Is Latin square is applicable for 2×2 ? Explain.					CO2	(Rem)
3.		Show that the NR formula for finding square root of N is $x_{n+1}=\frac{x_{n}^{2}+N}{2 x_{n}}$, where N is a real number.					CO3	(Und)
4.		Solve the system of equations $x-2 y=0,2 x+y=5$ by Gauss elimination method.					CO3	(Und)
5.		Why Gauss-Seidal method is a better method than Jacobi's iterative method.					CO3	(Rem)
		PART -B ($\mathbf{1 3 + 1 3 + 1 4 = 4 0 ~ M A R K S) ~}$ ANSWER ALL QUESTIONS						
6.	a)	The following tab sales man in three	he A 50 46 39	of Sale B 40 48 44	erato C 48 50 40	sold by four	CO 2	$\begin{gathered} \text { (Ana) } \\ (13) \end{gathered}$

		i) Do the salesman significantly differ in performance? ii) Is there significant difference between the months?		
		(OR)		
	b)	A farmer wishes to test the effect of four different fertilizers A, B, C, D are the yield of wheat. In order to eliminate sources of error due to variability in soil fertility, he uses the fertilizers in a Latin Square arrangement as indicated in the following table, where the members indicate yields in bushels per unit area. Perform an analysis of variance to determine if there is a significant difference between the fertilizers at 5% level of significance.	CO 2	$\begin{gathered} \text { (Ana) } \\ (13) \end{gathered}$
7.	a) i)	Identify the real positive root of $3 x-\cos x-1=0$ using Newton's Raphson method correct to four decimal places.	CO3	(App) (6)
	ii)	Solve the following system of equations ,using Gauss Jordan method $\begin{aligned} & 2 x+3 y-z=5 \\ & 4 x+4 y-3 z=3 \\ & 2 x-3 y+2 z=2 \end{aligned}$	CO3	(App) (7)
		(OR)		
	b) i)	Determine an approximate root of $\boldsymbol{x} \boldsymbol{\operatorname { l o g }}_{10} \boldsymbol{x}-\mathbf{1 . 2}=\mathbf{0}$ by Newton Raphson method.	CO3	(App) (6)
	ii)	Using Gauss Jordan method, find the inverse of $\left(\begin{array}{ccc}4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2\end{array}\right)$.	CO 3	(App) (7)

8.	a)	Analyze the variance in the Latin square of yields (in quintals) of wheat where $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ represent the different manures used. Test whether the different manures used have given significantly different yields.	CO 2	(Ana) (14)
		(OR)		
	b)	Compare the solution of Gauss Jacobi method and Gauss- Seidel method correct to 4 decimal places: $\begin{aligned} & x+y+8 z=20 \\ & 4 x+2 y+z=14 \\ & x+5 y-z=10 \end{aligned}$	CO 3	(App) (14)

Rem/Und: Remember/ Understand
App: Apply Ana: Analyze
Eva: Evaluate Cre: Create

