

SNS COLLEGE OF TECHNOLOGY Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++'(III Cycle) Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB101 – CIRCUIT ANALYSIS AND DEVICES

I YEAR/ II SEMESTER

UNIT 4 – TRANSISTORS AND THEIR APPLICATIONS

TOPIC - Bipolar Junction Transistor

What is a Transistor??

- Semiconductors: ability to change from conductor to insulator
- Can either allow current or prohibit current to flow
- Useful as a switch, but also as an amplifier
- Essential part of many technological advances

- Guglielmo Marconi invents radio in 1895
- Problem: For long distancetravel, signal must be amplified
- Lee De Forest improves on Fleming's original vacuum tube to amplify signals
- Made use of third electrode
 Too bulky for most applications

The Transistor is Born

Current transistors made of doped silicon

The first transistor was a point-contact transistor

The first point-contact transistor John Bardeen, Walter Brattain, and William Shockley Bell Laboratories, Murray Hill, New Jersey (1947)

Shockley

How Transistors Workk

- Doping: adding small amounts of other elements to create additional protons or electrons
- P-Type: dopants lack a fourth valence electron (Boron, Aluminum)
- N-Type: dopants have an additional(5th)
 valence electron (Phosphorus, Arsenic)
- Importance: Current only flows from P to N

- Diode: simple P-N junction.
- Forward Bias: allows current to flow from P to N.
- Reverse Bias: no current allowed to flow from N to P.
- Breakdown Voltage: sufficient
 N to P voltage of a Zener
 Diode will allow for current to
 flow in this direction.

Bipolar Junction transistor

bles and electrons etermine device characteristics Three terminal device

Control or two terminal currents

Amplification and switching through 3rd contact

□ Take pn diode

- Remember reverse bias
 characteristics
- Reverse saturation current: I₀

Bipolar Junction Transistor (ВЛ)

- 3 adjacent regions of doped Si (each connected to a lead):
 - Base. (thin layer, less doped).
 - Collector.
 - Emitter.

□ <u>2 types</u> of BJT:

- npn
- pnp
- Most common: npn

npn bipolar junction transistor

Developed by Shockley (1949)

pnp bipolar junction transistor

Carrier flow in BJTs

Transistor currents

 I_C =the collector current I_B = the base current I_E = the emitter current

- -The arrow is always drawn on the emitter
- -The arrow always point toward the n-type
- -The arrow indicates the direction of the emitter current:

pnp:E B npn: B E By imaging the analogy of diode, transistor can be construct like two diodes that connected together It can be conclude that the work of transistor is base on work of diode.

BJT npn Transistor

- □ 1 thin layer of p-type, sandwiched between 2 layers of n-type.
- N-type of emitter: more heavily doped than collector.
- With $V_C > V_B > V_E$:
 - Base-Emitter junction forward biased, Base-Collector reverse biased.
 - Electrons diffuse from Emitter to Base (from n top).
 - There's a depletion layer on the Base-Collector junction

 no flow of eallowed.
 - BUT the Base is thin and Emitter region is n+ (heavily doped)
 electrons have enough momentum to cross the Base into the Collector.
 - $\,\circ\,$ The small base current I_B controls a large current I_C

$$I_{E} = I_{C} + I_{B}$$

$$V_{C} > V_{B} > V_{E}$$

$$I_{E} = I_{C} + I_{B}$$

$$V_{BE} = V_{B} - V_{E}$$

$$V_{CE} = V_{C} - V_{E}$$

$$I_{C} = \beta I_{B}$$

$$I_{C} = \beta I_{B}$$

$$I_{C} = \beta I_{C}$$

$$I_{B} = V_{C} + V_{C} + V_{CE} +$$

T | T7

BJT Relationships - Equations

Note: The equations seen above are for the transistor, not the circuit.

Transistor Operation

- The basic operation will be described using the pnp transistor. The operation of the pnp transistor is exactly the same if the roles played by the electron and hole are interchanged.
- One p-n junction of a transistor is reverse-biased, whereas the other is forward-biased.

- Both biasing potentials have been applied to a pnp transistor and resulting majority and minority carrier flows indicated.
- Majority carriers (+) will diffuse across the forwardbiased p-n junction into the n-type material.
- A very small number of carriers (+) will through n-type material to the base terminal. Resulting IB is typically in order of microamperes.
- The large number of majority carriers will diffuse across the reverse-biased junction into the p-type material connected to the collector terminal.

- Majority carriers can cross the reverse-biased junction because the injected majority carriers will appear as minority carriers in the n-type material.
- Applying KCL to the transistor:

$$I_E = I_C + I_B$$

The comprises of two components – the majority and minority carriers

$$I_C = I_{Cmajority} + I_{COminority}$$

□ $I_{CO} - I_C$ current with emitter terminal open and is called leakage current.

	Modes of Operation			
Activ	e:	 Most important mode of operation Central to amplifier operation The region where current curves are practically flat 		
Satu	ration:	 Barrier potential of the junctions cancel each other out causing a virtual short 		
Cuto	off:	 Current reduced to zero Ideal transistor behaves like an open switch 		
* Note rarely	: There is used.	also a mode of operation called inverse active, but it is		

Operation region summary

Operation	I _B or V _{CE}	BC and BE	Mode
Region	Char.	Junctions	
Cutoff	<mark>I</mark> _B = Very	Reverse &	Open
	small	Reverse	Switch
Saturation	V _{CE} = Small	Forward &	Closed
		Forward	Switch
Active	V _{CE} =	Reverse &	Linear
Linear	Moderate	Forward	Amplifier
Break-	V _{CE} =	Beyond	Overload
down	Large	Limits	

