

SNS COLLEGE OF TECHNOLOGY Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++'(III Cycle) Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB101 – CIRCUIT ANALYSIS AND DEVICES

I YEAR/ II SEMESTER

UNIT 4 – TRANSISTORS AND THEIR APPLICATIONS

TOPIC - Bipolar Junction Transistor

Common-Base Configuration

- Common-base terminology is derived from the fact that the :
 - base is common to both input and output of the configuration.
 - base is usually the terminal closest to or at ground potential.
- All current directions will refer to conventional (hole) flow and the arrows in all electronic symbols have a direction defined by this convention.
- Note that the applied biasing (voltage sources) are such as to establish current in the direction indicated for each branch.

To describe the behavior of common-base amplifiers

requires two set of characteristics:

- Input or driving point characteristics.
- Output or collector characteristics

The output characteristics has 3 basic regions:

- Active region –defined by the biasing arrangements
- Cutoff region region where the collector current is 0A
- Saturation region- region of the characteristics to the left of $V_{\text{CB}}=0\text{V}$

Active	Saturation	Cut-off
region	region	region
 IE increased, Ic increased BE junction forward bias and CB junction reverse bias Refer to the graf, Ic ≈ IE Ic not depends on VcB Suitable region for the transistor working as amplifier 	 BE and CB junction is forward bias Small changes in Vсв will cause big different to Ic The allocation for this region is to the left of Vсв= 0 V. 	 Region below the line of IE=0 A BE and CB is reverse bias no current flow at collector, only leakage current

$I_C \approx IE$

 Once a transistor is in the `on' state, the base-emitter voltage will be assumed to be

$$V_{BE} = 0.7V$$

12/06/2024

$\mathbf{I}_{\mathsf{C}} = \Box \mathbf{I}_{\mathsf{E}} + \mathbf{I}_{\mathsf{CBO}}$

- □ It can then be summarize to $I_C = \Box I_E$ (ignore I_{CBO} due to small value)
- For ac situations where the point of operation moves on the characteristics curve, an ac alpha defined by

Alpha a common base current gain factorthat shows the efficiency by calculating the current percent from current flow from emitter to collector. The value of is typical from 0.9 ~ 0.998.

Proper biasing CB configuration in active region by approximation $I_C \square I_E (I_B \square 0 uA)$

12/06/2024

It is called common-emitter configuration since :

- emitter is common or reference to both input and output terminals.
- emitter is usually the terminal closest to or at ground
 - potential.
- Almost amplifier design is using connection of CE due to the high gain for current and voltage.
- Two set of characteristics are necessary to describe the behavior for CE ;input (base terminal) and output (collector terminal) parameters.

Proper Biasing common-emitter configuration in active region

Input characteristics for a common-emitter NPN transistor IB is microamperes compared to miliamperes of I_c .

- I_B will flow when V_{BE} > 0.7V
 for silicon and 0.3V for
 germanium
- Before this value I_B is very small and no I_B .
- Base-emitter junction is forward bias
- Increasing V_{CE} will reduce I_B for different values.

Output characteristics for a common-emitter npn transistor

- □ For small V_{CE} (V_{CE} < V_{CESAT} , I_C increase linearly with increasing of V_{CE}
- $\ \ \, \cup \ \ \, V_{CE} \, > \, V_{CESAT} \, I_C \, not \, totally \, depends \, \, on \, \, V_{CE} \, \square \, \, constant \, I_C$
- I_B(uA) is very small compare to I_C (mA). Small increase in I_B cause big increase in I_C
- $\Box \quad I_B = 0 \ A \ \Box \ I_{CEO} \ occur.$
- Noticing the value when $L_{e}=0A$. There is still some value of

መሠመም መካታ መስለ መስለ መስለ 23 CB101 - Circuit Analysis & Devices/K.Suriya/ECE/SNSCT

Active region	Saturation region	Cut-off region
 S-E junction is forward bias C-B junction is reverse bias can be employed for voltage, current and power amplification 	 B-E and C-B junction is forward bias, thus the values of I_B and I_C is too big. The value of V_{CE} is so small. Suitable region when the transistor as a logic switch. NOT and avoid this region when the transistor as an amplifier. 	 region below Instructions is to be avoided if an undistorted o/p signal is required B-E junction and C-B junction is reverse bias I_B=0, I_C not zero, during this condition I_C=I_{CEO} where is this current flow when B-E is reverse bias.
	$ = 0 \xrightarrow{\mathbf{C}}_{\mathbf{E}} \left I_{\mathbf{CEO}} \right ^{B \underbrace{\sim}_{I_{i}}} $	$B_{B} = 0$ E $Collector to emitter$

κ eta (β) or amplification factor

Fie ratio of dc collector current (IC) to the dc base current (IB) is dc beta (β dc) which is dc current gain where IC and IB are determined at a particular operating point, Q-point (quiescent point).

It's define by the following equation:

 $30 < \beta dc < 300 \square 2N3904$

On data sheet, $\beta_{dc} = h_{FE}$ with *h* is derived from ac hybrid equivalent cct. FE are derived from forwardcurrent amplification and common-emitter configuration respectively.

- For ac conditions an ac beta has been definitions of collector current (I_C) compared where changes of base current (I_B) where I_C and I_B are determined at operating point.
- □ On data sheet, $\Box_{ac} = h_{fe}$
- It can defined by the following equation:

Common-Base

Although the Common-Base configuration is not the most common biasing type, it is often helpful in the understanding of how the BJT works.

Common-Base

Circuit Diagram: NPN Transistor

The Table Below lists assumptions that can be made for the attributes of the common-base biased circuit in the different regions of operation. Given for a Silicon NPN transistor.

F	Region of Operation	C	V _{CE}	V _{BE}	V _{CB}	C-B Bias	E-B Bias
	Active	β Ι _Β	$=V_{BE}+V_{CE}$	~0.7V	0V	Rev.	Fwd.
S	aturation	Max	~0V	~0.7V	-0.7V <v<sub>CE<0</v<sub>	Fwd.	Fwd.
	Cutoff	~0	=V _{BE} +V _{CE}	0V	0V	Rev.	None /Rev.

Common-Collector

Emitter-Current Curves

The Common-Collector biasing circuit is basically equivalent to the commonemitter biased circuit except instead of looking at I_C as a function of V_{CE} and I_B we are looking at I_E . Also, since $\alpha \sim 1$, and $\alpha = I_C/I_E$ that means $I_C \sim I_E$

viree Types of BJT Biasing

Biasing the transistor refers to applying voltage to get the transistor to achieve certain operating conditions.

Common-Base Biasing (CB) : input = V_{EB} & I_E

output = $V_{CB} \& I_C$

Common-Emitter Biasing (CE): input = V_{BE} & I_B output = V_{CE} & I_C

Common-Collector Biasing (CC): input = V_{BC} & I_B output = V_{EC} & I_E

Configurations of Transistors Summary

Transistor Configuration Summary Table							
Transistor Configuration	Common Base	Common Collector (Emitter Follower)	Common Emitter				
Voltage Gain	High	Low	Medium				
Current Gain	Low	High	Medium				
Power Gain	Low	Medium	High				
Input / Output Phase Relationship	0°	0°	180°				
Input Resistance	Low	High	Medium				
Output Resistance	High	Low	Medium				

12/06/2024

