| Reg.No: |  |  |  |  |  |  |  |
|---------|--|--|--|--|--|--|--|
|---------|--|--|--|--|--|--|--|



SNS College of Technology, Coimbatore-35. (Autonomous)

B.E/B.Tech- Internal Assessment -III Academic Year 2023-2024 (Even Semester) Fourth Semester



## Aerospace Engineering 19AST203– Aircraft Structural Mechanics

Time: 1<sup>1/2</sup> Hours Maximum Marks: 50

## **Answer All Questions**

PART - A (5x 2 = 10 Marks)

|   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                              | CO  | E       | Blooms |  |
|---|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|--------|--|
| 1 | What is shear flow, and how is it related to thin-walled beams?                             |                                                                                                                                                                                                                                                                                                                                                              |     | 14 Rem  |        |  |
| 2 | How is the shear center of a thin-walled beam determined?                                   |                                                                                                                                                                                                                                                                                                                                                              | CO4 | App     |        |  |
| 3 | Describe the Bredt-Batho theory and its application in determining shear flow distribution. |                                                                                                                                                                                                                                                                                                                                                              | CO4 | CO4 Rem |        |  |
| 4 | What is the local buckling stress of thin-walled sections, and why is it                    |                                                                                                                                                                                                                                                                                                                                                              | CO5 | 5 App   |        |  |
| 5 | Describe inter-rivet buckling and sheet wrinkling failures in sheet metal                   |                                                                                                                                                                                                                                                                                                                                                              | CO5 |         | App    |  |
|   |                                                                                             | PART – B (13+13+14=40 Marks)                                                                                                                                                                                                                                                                                                                                 |     | 1       |        |  |
|   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                              |     | CO      | Blooms |  |
| 6 | (a)                                                                                         | A thin-walled two-cell beam with the singly symmetrical cross-section shown in Fig. Is built-in at one end where the torque is 11000 Nm. Assuming the cross-section remains undistorted by the loading, determine the distribution of shear flow and the position of the centre of twist at the built-in end. The shear modulus G is the same for all walls. | 13  | CO4     | Арр    |  |
|   |                                                                                             | (or)                                                                                                                                                                                                                                                                                                                                                         |     |         |        |  |

|    | (b) | Find the shear flow distribution and angle per twist in given fig.                                                                                                                                                                                                         |    |     |     |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
|    |     | 10.0KN.M<br>10.0KN.M<br>115mm<br>1.25mm<br>1.25mm<br>35.0 mm                                                                                                                                                                                                               | 13 | CO4 | App |
| 7. | (a) | Explain the pure tension field and semi tension field beam analysis and bring out their differences.                                                                                                                                                                       | 13 | CO5 | Eva |
|    |     | (or)                                                                                                                                                                                                                                                                       |    |     |     |
|    | (b) | What are the types of loads that an aircraft is subject to classify and explain these loads? Sketch and indicate how these loads act on an aircraft.                                                                                                                       | 13 | CO5 | App |
| 8. | (a) | Find the shear flow distribution for the cross section shown in Figure. Given area of stringers $a = a' = 2 \text{ cm}^2$ ; $b = b' = d = d' = 0.5 \text{ cm}2$ ; $c = c' = e = e' = 1 \text{ cm}^2$ and the thickness of $ab=be=cd=de=a'b'=b'c'=c'd'=d'e'=3 \text{ mm}$ . | 14 | CO4 | Cre |
|    | (b) | List out the different structural elements contained in an aircraft semi-                                                                                                                                                                                                  |    |     |     |
|    | (b) | monologue wing. What are their functions? Draw the wing diagram neatly.                                                                                                                                                                                                    | 14 | CO5 | Cre |
|    |     | ************                                                                                                                                                                                                                                                               |    |     |     |

Abbreviations

Rem- Remember App-Apply Ana-Analyze Eva-Evaluate Cre-Create