PART-A

1. The joint pdf of random variable x and y is given by $\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{k x y e} \mathbf{e}^{-\left(\mathbf{x}^{2}+\mathbf{y}^{2}\right)}, \mathbf{x}>\mathbf{0}, \mathbf{y}>\mathbf{0}$ find the value of k.
2. If X and Y have joint pdf $f(\mathbf{x}, \mathbf{y})=\left\{\begin{array}{ll}\mathbf{x}+\mathbf{y}, \mathbf{0}<\mathbf{x}<\mathbf{1}, \mathbf{0}<\mathbf{y}<\mathbf{1} \\ \mathbf{0}, & \text { otherwise }\end{array}\right.$. check whether X and Y are independent.
3. Let X and Y have j.d.f $f(x, y)=2,0<x<y<1$. Find m.d.f y
4. The j.d.f of the random variables X and Y is given by

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})=\left\{\begin{array}{ll}
8 x y, 0<\mathbf{x}<\mathbf{1}, 0<\mathbf{y}<\mathbf{x} \\
0, & \text { otherwise }
\end{array} \quad . \text { findf }_{\mathrm{x}}(\mathbf{x})\right.
$$

5. Given $\mathbf{f}(\mathbf{x}, \mathbf{y})=\left\{\begin{array}{ll}\mathbf{c x}(\mathbf{x}-\mathbf{y}), & \mathbf{0}<\mathbf{x}<\mathbf{2},-\mathbf{x}<\mathbf{y}<\mathbf{x} \\ \mathbf{0}, & \text { otherwise }\end{array}\right.$, find c.
6. The joint p.d.f of a bivariate random variable (X, Y) is given by

$$
\mathbf{f}(\mathbf{x}, \mathrm{y})=\left\{\begin{array}{l}
\mathbf{k x y}, 0<\mathbf{x}<1,0<\mathbf{y}<1 \\
0, \quad \text { otherwise }
\end{array} \text {, find } \mathrm{K}\right.
$$

7.If the joint pdf of (x, y) is $\mathbf{f}(\mathbf{x}, \mathbf{y})=\frac{\mathbf{1}}{\mathbf{4}}, \mathbf{0}<\mathbf{x}, \mathbf{y}<\mathbf{1}$, find $\mathbf{p}(\mathbf{x}+\mathbf{y} \leq \mathbf{1})$.
8. Two random variables X and Y have joint pdf $\mathbf{f}(\mathbf{x}, \mathbf{y})=\left\{\begin{array}{l}\frac{\mathbf{x y}}{\mathbf{9 6}}, \mathbf{0}<\mathbf{x}<\mathbf{4}, 1<\mathbf{y}<\mathbf{5} \\ \mathbf{0 ,} \text { otherwise }\end{array}\right.$, find $E(x)$.
9.If the joint pdf of (x, y) is given by $f(x, y)=x+y, 0 \leq x, y \leq 1 E(X Y)$. Find .
10..Find the acute angle between the two lines of regression
11.State the equation of the two regression lines. What is the formula for correlation coefficient
12.If X and Y are independent random variables with variance 2 and 3 . Find the variance of $3 X+4 Y$.
13.The two lines of regression are $8 x-10 y+66=0,40 x-18 y-214=0$.

Find the mean value of X and Y.
14.The two regression lines are $x=\frac{9}{20} y+\frac{107}{20}, y=\frac{4}{5} x+\frac{33}{5}$. Find correlation coefficient?

PART B

1. From the following distribution of (X, Y) find.
(i)

$$
\begin{equation*}
P(X \leq 1) \quad \text { (ii) } \quad P(Y \leq 3) \tag{ii}
\end{equation*}
$$

$$
\begin{align*}
& P(X \leq 1, Y \leq 3) \text { (iv) } \quad P\left(X \leq \frac{1}{Y} \leq 3\right) \tag{v}\\
& P\left(Y \leq \frac{3}{X} \leq 1\right) \text { (vi) } \quad P(X+Y \leq 4)
\end{align*}
$$

X	1	2	3	4	5	6
0	0	0	$\frac{1}{32}$	$\frac{2}{32}$	$\frac{2}{32}$	$\frac{3}{32}$
1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
2	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$	0	$\frac{2}{64}$

2. If the joint p.d.f of a two dimensional random variable (X, Y) is given by

$$
f(x, y)=\left\{\begin{array}{cc}
x^{2}+\frac{x y}{3}: & 0<x<1 ; 0<y<2 \\
0: & \text { otherwise }
\end{array}\right.
$$

Find (i)

$$
\begin{align*}
& P(X>1 / 2) \text { (ii) } \quad P(Y>1) \tag{iii}\\
& P(Y<X) \\
& P\left(Y<\frac{1}{2} /{ }_{X<\frac{1}{2}}^{2}\right) \\
& \text { (v) }
\end{align*}
$$

(i)
(vii) Check whether the conditional density functions are valid.
3. The joint p.d.f of the random variable (X, Y) is given by

$$
f(x, y)=k x y e^{-\left(x^{2}+y^{2}\right)} x>0, y>0
$$

(i)Find k (ii) Prove that X and Y are independent.
4. Two random variables X and Y have the following joint probability density functions

$$
f(x, y)=\left\{\begin{array}{cc}
2-x-y: 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & : \text { otherwise }
\end{array}\right.
$$

(i) Find the marginal density functions of X and Y
(ii) Conditional density function
(iii) Var X and Var Y
(iv) Correlation coefficient between X and Y .
5. Marks obtained by 10 students in Mathematics(x) and statistics(y) are given below

$\mathrm{x}:$	60	34	40	50	45	40	22	43	42	64
$\mathrm{y}:$	75	32	33	40	45	33	12	30	34	51

Find the two regression lines. Also find y when $x=55$.
6. In a correlation analysis the equations of the two regression lines are $3 x+12 y=9$; and $3 y+9 x=46$. Find (i) The value of the correlation coefficient (ii) Mean value of X and Y .
7. From the following data
(i) two regression eqn (ii) correlation co.eff
(ii) the most likely mark in Statistics when marks in Economics are 30

Economics	25	28	35	32	31	36	29	38	34	32
Statistics	43	46	49	41	36	32	31	30	33	34

PART C

1. Discuss briefly about the applications of Two Dimensional random variable,correlation,Regression.
