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INTRODUCTION

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a 

queue is open at both its ends. 

One end is always used to insert data (enqueue) and the other is used to remove data 

(dequeue). Queue follows First-In-First-Out methodology, i.e., the data item stored 

first will be accessed first.

A real-world example of queue can be a single-lane one-way road, where the vehicle 

enters first, exits first. More real-world examples can be seen as queues at the ticket 

windows and bus-stops.
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Queue Representation

This feature makes it FIFO data structure. FIFO stands for First-in-first-out. 
The following diagram given below tries to explain queue representation as 

data structure.
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Operation of Queue

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

 peek() − Gets the element at the front of the queue without removing it.

 isFull() − check if Queue is full.

 isEmpty() − check if Queue is empty.
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peek()

 peek() − Gets the element at the front of the queue without removing it.
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isfull()

 isFull() − check if Queue is full.
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isEmpty( )

 isEmpty() − check if Queue is empty
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enqueue()

 enqueue() − add (store) an item to the queue.

Queues maintain two data pointers, front and rear. Therefore, its operations are 

comparatively difficult to implement than that of stacks.
 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and exit.

 Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

 Step 4 − Add data element to the queue location, where the rear is pointing.

 Step 5 − Returns success.

Queue ADT/ PROG IN C AND DS / Ambika/S/AIML/SNSCT
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enqueue()
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dequeue()

 dequeue() − remove (access) an item from the queue.

Step 1 − Check if the queue is empty.

Step 2 − If the queue is empty, produce underflow error and exit.

Step 3 − If the queue is not empty, access the data where front is pointing.

Step 4 − Increment front pointer to point to the next available data element.

Step 5 − Return success.
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dequeue()

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.htm


