
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES
I YEAR - II SEM

UNIT 4 – STACK AND QUEUE

TOPIC 2 – Queue ADT



22

INTRODUCTION

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a 

queue is open at both its ends. 

One end is always used to insert data (enqueue) and the other is used to remove data 

(dequeue). Queue follows First-In-First-Out methodology, i.e., the data item stored 

first will be accessed first.

A real-world example of queue can be a single-lane one-way road, where the vehicle 

enters first, exits first. More real-world examples can be seen as queues at the ticket 

windows and bus-stops.



33

Queue Representation

This feature makes it FIFO data structure. FIFO stands for First-in-first-out. 
The following diagram given below tries to explain queue representation as 

data structure.



44

Operation of Queue

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

 peek() − Gets the element at the front of the queue without removing it.

 isFull() − check if Queue is full.

 isEmpty() − check if Queue is empty.



55

peek()

 peek() − Gets the element at the front of the queue without removing it.



66

isfull()

 isFull() − check if Queue is full.



77

isEmpty( )

 isEmpty() − check if Queue is empty



888/11

enqueue()

 enqueue() − add (store) an item to the queue.

Queues maintain two data pointers, front and rear. Therefore, its operations are 

comparatively difficult to implement than that of stacks.
 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and exit.

 Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

 Step 4 − Add data element to the queue location, where the rear is pointing.

 Step 5 − Returns success.

Queue ADT/ PROG IN C AND DS / Ambika/S/AIML/SNSCT



99

enqueue()



1010

dequeue()

 dequeue() − remove (access) an item from the queue.

Step 1 − Check if the queue is empty.

Step 2 − If the queue is empty, produce underflow error and exit.

Step 3 − If the queue is not empty, access the data where front is pointing.

Step 4 − Increment front pointer to point to the next available data element.

Step 5 − Return success.



1111

dequeue()

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.htm


