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Queue Is an abstract data structure, somewhat similar to Stacks. Unlike stacks, é'
gueue IS open at both Its ends.

» One end Is always used to insert data (enqueue) and the other Is used to remove data
(dequeue). Queue follows First-In-First-Out methodology, I.e., the data item stored
first will be accessed first.

» A real-world example of queue can be a single-lane one-way road, where the vehicle
enters first, exits first. More real-world examples can be seen as queues at the ticket
windows and bus-stops.
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Queue Representation
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» This feature makes It FIFO data structure. FIFO stands for First-in-first-out.
» The following diagram given below tries to explain queue representation as

data structure.
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Operation of Queue
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» enqueue() — add (store) an item to the queue.

» dequeue() — remove (access) an item from the gueue.

» peek() — Gets the element at the front of the queue without removing It.
» IsSFull() — check if Queue is full.

» IsEmpty() — check If Queue Is empty.




peek()
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» peek() — Gets the element at the front of the queue without removing It.

int peek() 1
return gqueue|front];



isfull() - 5
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> isFull() — check if Queue is full.

bool isfull() {
if{rear == MAXS5IZE - 1)
return true,
else
return ftalse;



ISEmpty( )
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» IsEmpty() — check If Queue Is empty

bool isempty() {
if(front < @ || front > rear)
return tTrue;
else
return false;



enqueue()
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» enqueue() — add (store) an item to the queue.
» Queues maintain two data pointers, front and rear. Therefore, its operations are

comparatively difficult to implement than that of stacks.

% Step 1 — Check if the queue is full.

s Step 2 — If the queue 1s full, produce overflow error and exit.

» Step 3 — If the queue is not full, increment rear pointer to point the next empty space.
» Step 4 — Add data element to the queue location, where the rear Is pointing.

Step 5 — Returns success.
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enqueue()
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int engueue{int data)
if(isftull())
return @;

rear rear + 1;

queue| rear]|] = data;

return 1;
end procedure



dequeue()
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» dequeue() — remove (access) an item from the queue.
“»Step 1 — Check If the queue Is empty.
“»Step 2 — If the queue 1s empty, produce underflow error and exit.
“»Step 3 — If the queue Is not empty, access the data where front Is pointing.
“»*Step 4 — Increment front pointer to point to the next available data element.
“»Step 5 — Return success.
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dequeue()
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int degueue() 1
if({isempty())
return @;

int data = gqueue|front];
front = front + 1;

return data;

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.htm
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