ﬁ—

SNS COLLEGE OF TECHNOLOGY L

Coimbatore-35
An Autonomous Institution

LLTTITITIONS

Accredited by NBA - AICTE and Accredited by NAAC - UGC with A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23ITT101-PROGRAMMING IN C AND DATA STRUCTURES

I YEAR - II SEM

UNIT 4 - STACK AND QUEUE

TOPIC 2 - Queue ADT

INTRODUCTION >

LFTTTITIONS

—

=
d

=
[\
— .

- I

Queue Is an abstract data structure, somewhat similar to Stacks. Unlike stacks, é'
gueue IS open at both Its ends.

» One end Is always used to insert data (enqueue) and the other Is used to remove data
(dequeue). Queue follows First-In-First-Out methodology, I.e., the data item stored
first will be accessed first.

» A real-world example of queue can be a single-lane one-way road, where the vehicle
enters first, exits first. More real-world examples can be seen as queues at the ticket
windows and bus-stops.

LAST IN FIRST IN
LAST OUT FIRST OUT

Queue Representation

LLTTITITION S

» This feature makes It FIFO data structure. FIFO stands for First-in-first-out.
» The following diagram given below tries to explain queue representation as

data structure.
&
In Data Data Data Jats Data Data Out
Y ——)
Last In Last Out First In First OQut

Operation of Queue

LLTTTTITIONS

» enqueue() — add (store) an item to the queue.

» dequeue() — remove (access) an item from the gueue.

» peek() — Gets the element at the front of the queue without removing It.
» IsSFull() — check if Queue is full.

» IsEmpty() — check If Queue Is empty.

peek()

CLLTTITOTIONS

» peek() — Gets the element at the front of the queue without removing It.

int peek() 1
return gqueue|front];

isfull() - 5

FIrorion’s

> isFull() — check if Queue is full.

bool isfull() {
if{rear == MAXS5IZE - 1)
return true,
else
return ftalse;

ISEmpty()

SITTITION S

» IsEmpty() — check If Queue Is empty

bool isempty() {
if(front < @ || front > rear)
return tTrue;
else
return false;

enqueue()

LLTTITITION S

» enqueue() — add (store) an item to the queue.
» Queues maintain two data pointers, front and rear. Therefore, its operations are

comparatively difficult to implement than that of stacks.

% Step 1 — Check if the queue is full.

s Step 2 — If the queue 1s full, produce overflow error and exit.

» Step 3 — If the queue is not full, increment rear pointer to point the next empty space.
» Step 4 — Add data element to the queue location, where the rear Is pointing.

Step 5 — Returns success.

L)

NS

&

L/

¢ o

L)

®

%Y

*

RFRe=r —romt

i < = ~ before

Re=arnr ot

- = = > =fiter

Ouueaeuse Ermguasus

Queue ADT/ PROG IN C AND DS / Ambika/S/AIML/SNSCT 8/11

enqueue()

FIrorion’s

int engueue{int data)
if(isftull())
return @;

rear rear + 1;

queue| rear]|] = data;

return 1;
end procedure

dequeue()

LLTTTTITIONS

» dequeue() — remove (access) an item from the queue.
“»Step 1 — Check If the queue Is empty.
“»Step 2 — If the queue 1s empty, produce underflow error and exit.
“»Step 3 — If the queue Is not empty, access the data where front Is pointing.
“»*Step 4 — Increment front pointer to point to the next available data element.
“»Step 5 — Return success.

Rear —ronmt

1 1

before o = =

—ear —ronmt

after — — — degueuse

Oueus \r

COueue Degusus

10

dequeue()

FIrorion’s

int degueue() 1
if({isempty())
return @;

int data = gqueue|front];
front = front + 1;

return data;

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.htm

11

