ﬁ—

SNS COLLEGE OF TECHNOLOGY L

Coimbatore-35
An Autonomous Institution

LLTTITITIONS

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITT101-PROGRAMMING IN C AND DATA STRUCTURES

I YEAR - II SEM

UNIT 4 - STACK AND QUEUE

TOPIC 7 - Postfix expression evaluation

Postfix Expression
AB+

Postfix Expression

* Infix expression Is the form AOB
— A and B are numbers or also infix expression
— O Is operator (+, -, *, /)

 Postfix expression Is the form ABO

— A and B are numbers or also postfix expression
— O Is operator (+, -, *, /)

From Postfix to Answer

* The reason to convert Iinfix to postfix expression
IS that we can compute the answer of postfix
expression easier by using a stack.

LLTTITITION S

From Postfix to Answer

ExX: 1028 * + 3 -
*First, push(10) Into the stack

10

LLTTITITION S

From Postfix to Answer

ExX: 1028 * + 3 -
*Then, push(2) into the stack

10

TSI TION S

From Postfix to Answer

Ex: 1028 * + 3 -
* Push(8) into the stack

10

From Postfix to Answer 7 ;«/rwna,y:

Ex:1028*+ 3 -

*Now we see an operator *, that means we can get
an n umber by calculation

10

From Postfix to Answer

Ex:1028*+ 3 -

*Now we see an operator *, that means we can get
an new number by calculation

*Pop the first two numbers

2 * 8 = S
B 2

10

From Postfix to Answer

Ex:1028*+ 3 -

*Now we see an operator *, that means we can get
an new number by calculation

*Push the new number back

7?27 * 8 =

16

o

From Postfix to Answer INSTHIDTITE

Ex:1028*+ 3 -

*Then we see the next operator + and perform
the calculation

10 +, 16 = 26 16

From Postfix to Answer

Ex: 1028 * + 3 -
*Then we see the next operator + and perform the
calculation

*Push the new number back

10 + |16

26

26

From Postfix to Answer ING /DTN,

Ex:1028*+ 3 -
e \We see the next number 3
» Push (3) Into the stack

26

’

CompUte the Answer _ ;7,//;//7/9,\/3

Ex:1028*+ 3 -
* The last operation

From Postfix to Answer V INS TDOTENE

Ex:1028*+ 3 -
* The last operation

26 - |3 < ::)
@ answer!

From Postfix to Answer 1110115775

» Algorithm: maintain a stack and scan the postfix
expression from left to right

— If the element Is a number, push It into the stack

— If the element Is a operator O, pop twice and get A and
B respectively. Calculate BOA and push it back to the
stack

— When the expression Is ended, the number In the stack
IS the final answer

Transform Infix to Postfix

LLTTTTITIONS

* Now, we have to design an algorithm to
transform infix expression to postfix

Transform Infix to Postfix

LLTTITITION S

* Observation 1: The order of computation depends on
the order of operators

— The parentheses must be added according to the priority of
operations.

— The priority of operator * and / Is higher then those of
operation + and —

— If there are more than one equal-priority operators, we
assume that the left one’s priority i1s higher than the right
one’s

* This is called left-to-right parsing.

Transform Infix to Postfix

LLTTTTITION S

* Observation 1: The order of computation depends
on the order of operators (cont.)

— For example, to add parentheses for the expression 10 +
27*8-3,

— we first add parenthesis to 2 * 8 since Its priority Is
highest in the expression.

— Then we add parenthesis to 10 + (2 * 8) since the
priorities of + and — are equal, and + Is on the left of -.

— Finally, we add parenthesis to all the expression and get
((10 + (2 * 8)) - 3).

Transform Infix to Postfix

* Observation 1: The order of computation depends
on the order of operators (cont.)

— The computation order of expression ((10 + (2 * 8)) - 3)
IS:

+ 2*8=16 € ((10+16)3
+ 10 + 16 = 26 € (26-23)
¢ 26— 3=23 € 23

LLTTITITIONS

Transform Infix to Postfix

» Simplify the problem, how if there are only +/-
operators?

Transform Infix to Postfix

» Simplify the problem, how if there are only +/-
operators?

* The leftmost operator will be done first
—-Ex:10-2+3€8+3€11

Transform Infix to Postfix T

» Simplify the problem, how if there are only +/-
operators?

» Algorithm: maintain a stack and scan the postfix
expression from left to right
— When we get a number, output It

— When we get an operator O, pop the top element in the
stack If the stack 1s not empty and then push(O) Into
the stack

Transform Infix to Postfix INSTIDTONE

» Simplify the problem, how If there are only +/-
operators?

 Algorithm: maintain a stack and scan the postfix
expression from left to right

— When we get a number, output It

— When we get an operator O, pop the top element in the
stack If the stack Is not empty and then push(O) Into
the stack

— When the expression Is ended, pop all the operators
remain In the stack

Transform Infix to Postfix

ExX:10+2-8+ 3
*\We see the first number 10, output it

10

Transform Infix to Postfix

Ex:10+2-8+ 3

*\We see the first operator
+, push(+) Into the stack because at this moment

the stack Is empty

10

Transform Infix to Postfix

. EX:10+2-8+3
. We see the number 2, output It

o
~» i

) i
CLTITUTIONS

10 2

Transform Infix to Postfix

Ex:10+2-8+ 3

*\\e see the operator -, pop the operator + and push(-
) Into the stack

10 2 +

Transform Infix to Postfix

. ExX:10+2-8+3
. We see the number 8, output it

102 + 8

LTS rITU IO S

Transform Infix to Postfix

Ex:10+2-8+ 3

*\We see the operator +, pop the operator - and
push(+) Into the stack

102 + 8 -

Transform Infix to Postfix

- ExX:10+2-8+3
. We see the number 3, output it

102 + 8 - 3

ISTIDIPNE

Transform Infix to Postfix

Ex:10+2-8+ 3

*\We come to the end of the expression, then we pop
all the operators In the stack

102 + 8 - 3 +

Transform Infix to Postfix

Ex:10+2-8+ 3

*\When we get an operator, we have to push It Into
the stack and pop It when we see the next operator.

*The reason 1s, we have to “wait” for the second
operand of the operator

LLTTITITIONS

Transform Infix to Postfix

* How to solve the problem when there are
operators +, -, *, [?

Transform Infix to Postfix

* Observation 2: scan the infix expression from left
to right, If we see higher- priority operator after
lower-priority one, we know that the second
operand of the lower-priority operator Is an
expression
—Ex:a+tb*c=a+(b*c)€abc*+
— That Is, the expression b ¢ * Is the second operand of

the operator “+”

LLTFITITIONS

Transform Infix to Postfix

* So, we modify the algorithm to adapt the
situation

LLTTTTITIONS

Transform Infix to Postfix

» Algorithm: maintain a stack and scan the postfix
expression from left to right

— When we get a number, output It

— When we get an operator O, pop the top element in the
stack until there Is no operator having higher priority
then O and then push(O) Into the stack

— When the expression Is ended, pop all the operators
remain In the stack

Transform Infix to Postfix

TSI TION S

ExX:10+2*8-3
*\We see the first number 10, output it

10

Transform Infix to Postfix

LLTTITITION S

Ex:10+2*8-3
* \We see the first operator
+, push It Into the stack

10

Transform Infix to Postfix

. EX:10+2*8-3
. We see the number 2, output It

10 2

LTS rITU IO S

Transform Infix to Postfix

Ex:10+2*38-3
*We see the operator *, since the top operator In
the sf +, has lower priority then *, push(*)

) 10 2

.
E .

) i
SN STOTNE;

Transform Infix to Postfix

. EX:10+2*8-3
. We see the number 8, output it

* 102 8

LLTTTTITIONS

Transform Infix to Postfix

ExX:10+2*8-3

*\\e see the operator -, because Its priority Is lower then *,
we p¢=—2-'s0, because + Is on the left of it, we pop +, too.
Then sh(-)

102 8 * +

Transform Infix to Postfix

. EX:10+2*8-3
. We see the number 3, output it

ST TITUTIONTS

1028 * +3

Transform Infix to Postfix

Ex:10+2*38-3
*Because the expression i1s ended, we pop all the
opery In the stack

1028 * + 3 -

