

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19CSB201 – Operating Systems

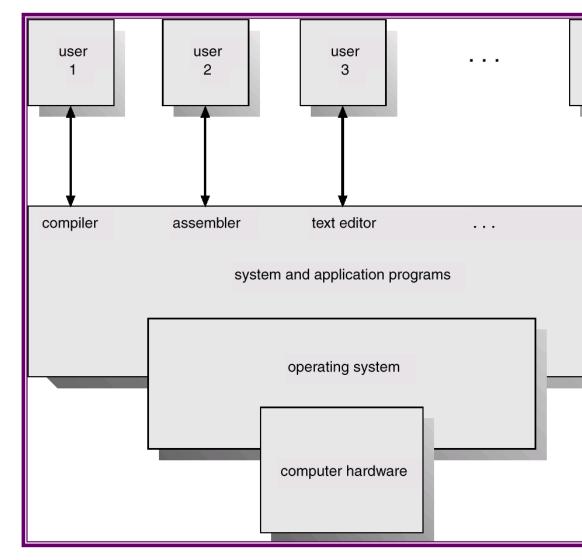
I B.TECH – IT / IV SEMESTER

UNIT 1 – 'OVERVIEW AND PROCESS MANAGEMENT

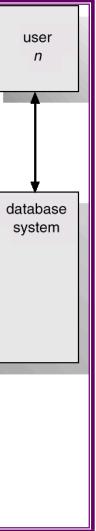
19CSB201 – Operating Systems/K.S Mohan/ AP-IT/ SNSCT

Chapter 1:Introduction

- A program that acts as an intermediary between a user of a computer and the computer hardware.
- Operating system goals:
 - [©] Execute user programs and make solving user problems easier.
 - Make the computer system convenient to use.
- Use the computer hardware in an efficient manner...


Computer System Components

- Hardware provides basic computing resources (CPU, memory, 1. I/O devices).
- 2.Operating system controls and coordinates the use of the hardware among the various application programs for the various users.
- 3.Applications programs define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs).
- 4.Users (people, machines, other computers).



Abstract View of System Components

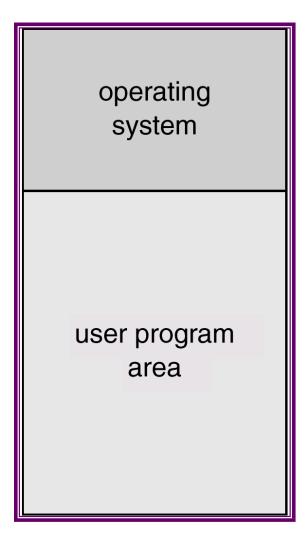
Operating System Definitions

Resource allocator – manages and allocates resources.

- Control program controls the execution of user programs and operations of I/O devices .
- Kernel the one program running at all times (all else) being application programs).

Mainframe Systems

1.Reduce setup time by batching similar jobs


- 2. Automatic job sequencing automatically transfers control from one job to another. First rudimentary operating system.
- 3.Resident monitor
- 4. initial control in monitor
- 5.control transfers to job
- 6.when job completes control transfers pack to monitor.

Memory Layout for a Simple Batch System

19CSB201 – Operating Systems/K.S Mohan/ AP-IT/ SNSCT

0	
	operating system
	job 1
	job 2
	job 3
512K	job 4

OS Features Needed for Multiprogramming

- I/O routine supplied by the system.
- Memory management the system must allocate the memory to several jobs.
- CPU scheduling the system must choose among
- several jobs ready to run.
- Allocation of devices.

Time-Sharing Systems-Interactive Computing

- The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).
- A job swapped in and out of memory to the disk.
- On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next "control statement" from the user's keyboard.
- On-line system must be available for users to access data and code.

Desktop Systems

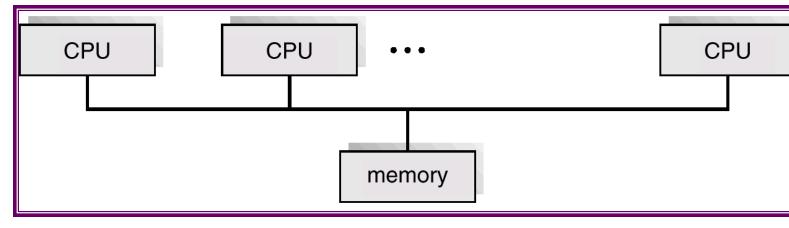
- Personal computers computer system dedicated to a single user.
- I/O devices keyboards, mice, display screens, small printers.
- User convenience and responsiveness.
- Can adopt technology developed for larger operating system' often individuals have sole use of computer and do not need advanced CPU utilization of protection features.
- May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

ed to a single user. small printers.

Parallel Systems

- Multiprocessor systems with more than on CPU in close communication.
- Tightly coupled system processors share memory and a clock; communication usually takes place through the shared *memory*.
- Advantages of parallel system:
- Increased throughput
- Economical
- Increased reliability
- graceful degradation
- *fail-soft systems*

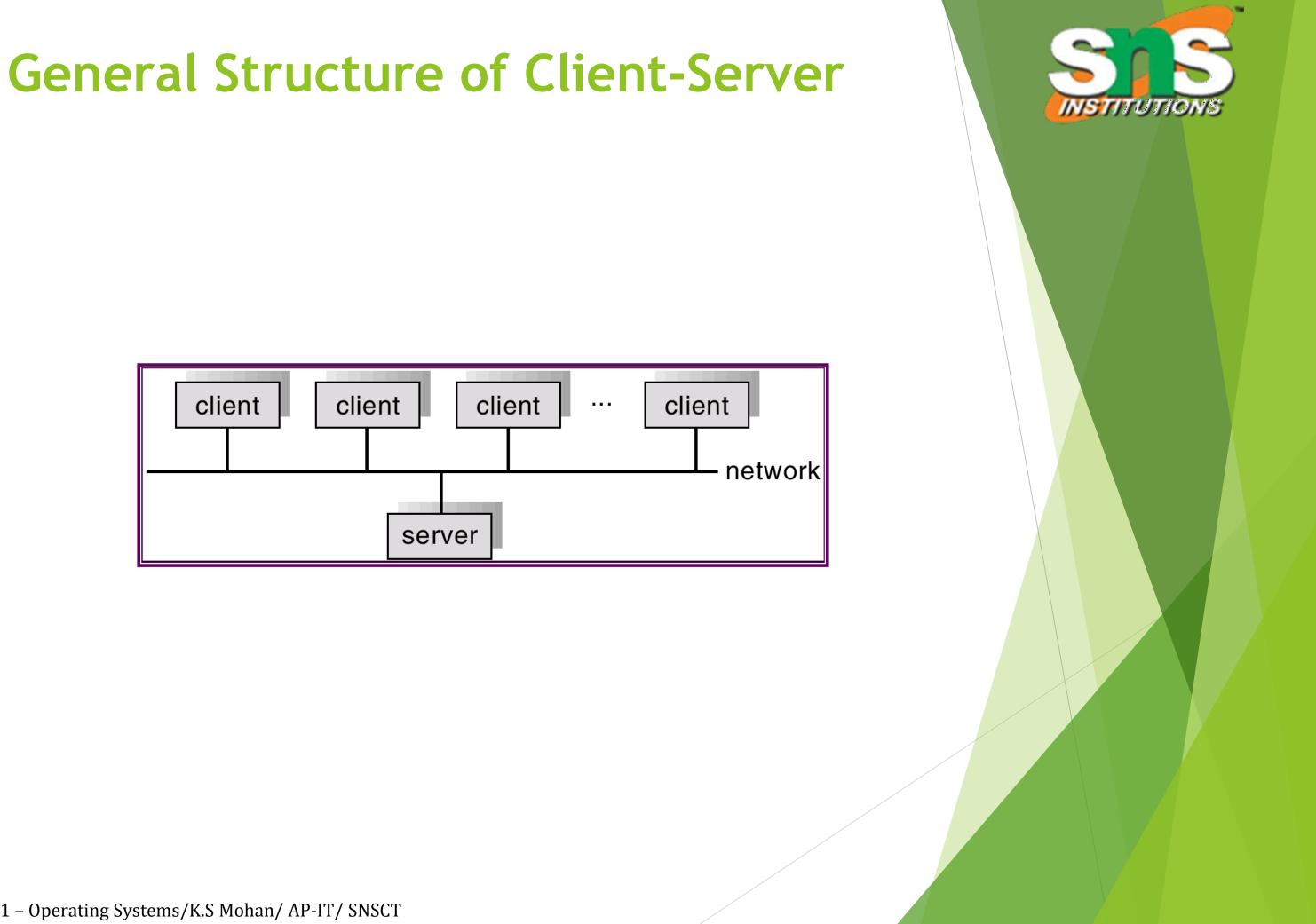
Parallel Systems (Cont.)


- Symmetric multiprocessing (SMP)
- Each processor runs and identical copy of the operating system.
- Many processes can run at once without performance deterioration.
- Most modern operating systems support SMP
- Asymmetric multiprocessing
- Each processor is assigned a specific task; master processor schedules and allocated work to slave processors.
- More common in extremely large systems

Symmetric Multiprocessing Architecture

Distributed Systems

- Distribute the computation among several physical processors.
- Loosely coupled system each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines.
- Advantages of distributed systems.
- Resources Sharing
- Computation speed up load sharing
- Reliability
- Communications


Distributed Systems (cont)

- Requires networking infrastructure.
- Local area networks (LAN) or Wide area networks (WAN)
- May be either client-server or peer-to-peer systems.

19CSB201 – Operating Systems/K.S Mohan/ AP-IT/ SNSCT

Clustered Systems

- Clustering allows two or more systems to share storage.
- Provides high reliability.
- Asymmetric clustering: one server runs the application while other servers standby.
- Symmetric clustering: all N hosts are running the application.

Real-Time Systems

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.
- Well-defined fixed-time constraints.
- Real-Time systems may be either hard or soft real-time.

Real-Time Systems (Cont.)

■ Hard real-time:

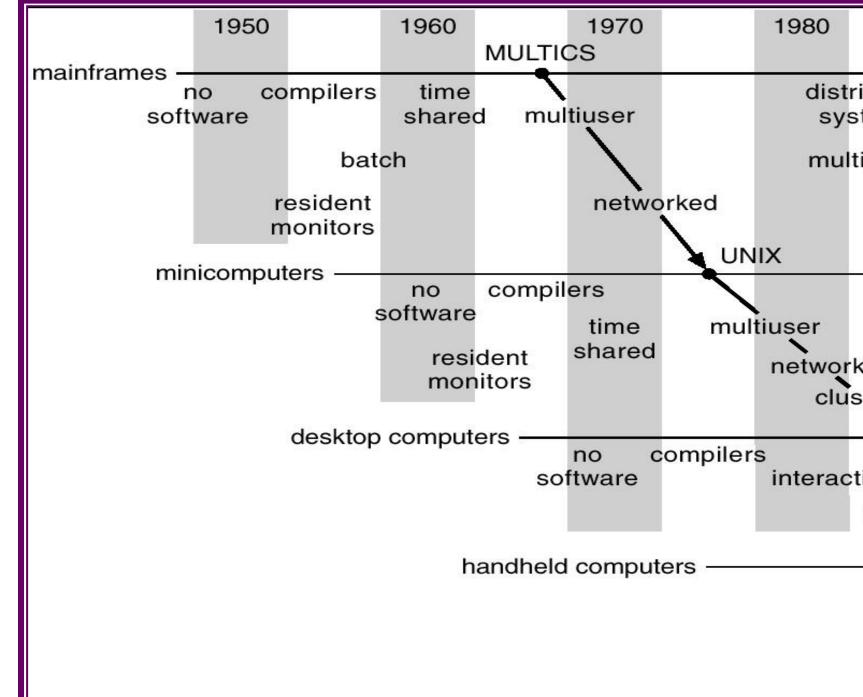
Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM)

Conflicts with time-sharing systems, not supported by general-purpose operating systems.

■ Soft real-time

[©]Limited utility in industrial control of robotics

^c Useful in applications (multimedia, virtual reality) requiring advanced operating-system features.


Handheld Systems

- Personal Digital Assistants (PDAs)
- Cellular telephones
- Issues:
- Limited memory
- Slow processors
- Small display screens.

Migration of Operating-System Concept and Features

19CSB201 – Operating Systems/K.S Mohan/ AP-IT/ SNSCT

	1990		2000	
ributed stems				
tiproces	sor			
fau	ult tolera	int		
m	ultiproce	essor		
ked	fault	toleran	t	
stered	NIX			
tive	multipr	ocessoi	r	
multius	ser net	worked	INIX	
	compi		no oftware	
	inte	eractive		
	networked			

Computing Environments

Traditional computing
Web-Based Computing
Embedded Computing

