Memory Management, Process Management Storage Management, Mass-Storage Management

Memory Management

- All data in memory before and after processing
- All instructions in memory in order to execute
- Memory management determines what is in memory when
 - Optimizing CPU utilization and computer response to users
- Memory management activities
 - Keeping track of which parts of memory are currently being used and by whom
 - Deciding which processes (or parts thereof) and data to move into and out of memory
 - Allocating and deallocating memory space as needed

Process Management – Memory Management

Process Management

- Process and Program:
 - A **process** is a program in execution (unit of work within the system).
 - **Program** is a *passive entity*, process is an *active entity*.
- Process needs resources to accomplish its task
 - CPU, memory, I/O, files (received upon creation and along execution)
 - Initialization data (e.g., a process for presenting the status of a file)
- Process termination requires reclaim of any reusable resources
- Single-threaded process has one **program counter** specifying location of next instruction to execute
 - Process executes instructions sequentially, one at a time, until completion
- Multi-threaded process has one program counter per thread
- Typically system has many processes, some user, some operating system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes / threads

Storage Management

- OS provides uniform, logical view of information storage
 - Abstracts physical properties to logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include access speed, capacity, datatransfer rate, access method (sequential or random)
- File-System management
 - Files usually organized into directories
 - Access control on most systems to determine who can access what
 - OS activities include
 - Creating and deleting files and directories
 - Primitives to manipulate files and dirs
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

Mass-Storage Management

- Main memory only large storage media that the CPU can access directly
- Why using disks?
 - Store data that does not fit in main memory
 - Store data that must be kept for a "long" period of time
- Proper management is of central importance
- Entire speed of computer operation hinges on disk subsystem and its algorithms
- OS activities
 - Free-space management
 - Storage allocation
 - Disk scheduling

Process Management –Memory Management

Storage Structure

- Secondary storage:
 - Extension of main memory
 - Provides large nonvolatile storage capacity
- Magnetic disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors

Process Management – Memory Management

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility

It takes some time (several CPU cycles) to read/write to main memory – in the meantime the processor needs to stall because it doesn't have the necessary data

Operating-System Operations

- Handle flow problems:
 - Software error or request creates exception or trap
 - Division by zero, request for operating system service
 - Other process problems include infinite loop, processes modifying each other or the operating system
 - Example: in MS-Dos, originally written for Intel 8088:
 - a user program can wipe out the operating system by writing over it with data

Transition from User to Kernel Mode

- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as **privileged**, only executable in kernel mode

Example

■Which of the following instructions should be privileged?

- b. Read the clock.
- c. Clear memory.
- d. Issue a trap instruction.
- e. Turn off interrupts.
- f. Modify entries in device-status table.
- g. Switch from user to kernel mode.
- h. Access I/O device.

Answer

■Which of the following instructions should be privileged?

- b. Read the clock.
- c. Clear memory.
- d. Issue a trap instruction.
- e. Turn off interrupts.
- f. Modify entries in device-status table.
- g. Switch from user to kernel mode.
- h. Access I/O device.

Process and Program:

- A **process** is a program in execution (unit of work within the system).
- **Program** is a *passive entity*, process is an *active entity*.
- Process needs resources to accomplish its task
 - CPU, memory, I/O, files (received upon creation and along execution)
 - Initialization data (e.g., a process for presenting the status of a file)
- Process termination requires reclaim of any reusable resources
- Single-threaded process has one program counter specifying location of next instruction to execute
 - Process executes instructions sequentially, one at a time, until completion
- Multi-threaded process has one program counter per thread
- Typically system has many processes, some user, some operating system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

The operating system is responsible for the following activities:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling