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Background

• Concurrent access to shared data may result in data inconsistency.

• Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes.

• Shared-memory solution to bounded-butter problemallows at mostn
– 1 items in buffer at the same time. A solution, where allN buffers
are used is not simple.

• Suppose that we modify the producer-consumer code by adding a variable
counter, initialized to 0 and incremented each time a new item is added to the
buffer
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Bounded-Buffer 

• Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;
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Bounded-Buffer 

• Producer process 

item nextProduced;

while (1) {

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}
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Bounded-Buffer 

• Consumer process 

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}
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Bounded Buffer

• The statements

counter++;
counter--;

must be performed atomically.

• Atomic operation means an operation that completes in its entirety 
without interruption.
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Bounded Buffer

• The statement “count++” may be implemented in machine language 
as:

register1 = counter

register1 = register1 + 1
counter = register1

• The statement “count—” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2
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Bounded Buffer

• If both the producer and consumer attempt to update the buffer 
concurrently, the assembly language statements may get interleaved.

• Interleaving depends upon how the producer and consumer processes 
are scheduled.
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Bounded Buffer

• Assume counter is initially 5. One interleaving of statements is:

producer: register1 = counter(register1 = 5)
producer: register1 = register1 + 1(register1 = 6)
consumer: register2 = counter(register2 = 5)
consumer: register2 = register2 – 1(register2 = 4)
producer: counter = register1(counter = 6)
consumer: counter = register2(counter = 4)

• The value of count may be either 4 or 6, where the correct result 
should be 5.
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Race Condition

• Race condition: The situation where several processes access – and 
manipulate shared data concurrently. The final value of the shared 
data depends upon which process finishes last.

• To prevent race conditions, concurrent processes must be 
synchronized.
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The Critical-Section Problem
• n processes all competing to use some shared data

• Each process has a code segment, called critical section, in 
which the shared data is accessed.

• Problem – ensure that when one process is executing in its 
critical section, no other process is allowed to execute in its 
critical section.
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Solution to Critical-Section Problem
1. Mutual Exclusion. If processPi is executing in its

critical section, then no other processes can be executing in
their critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their critical
section, then the selection of the processes that will enterthe
critical section next cannot be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted.
�Assume that each process executes at a nonzero speed
�No assumption concerning relative speed of then processes.
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Initial Attempts to Solve Problem

• Only 2  processes, P0 and P1

• General structure of process Pi (other process Pj)

do {

entry section

critical section

exit section

reminder section

} while (1);

• Processes may share some common variables to synchronize their 
actions.
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Algorithm 1

• Shared variables: 
• int turn ;

initially turn = 0
• turn - i  Pi can enter its critical section

• Process Pi

do {
while (turn != i) ;

critical section
turn = j ;

reminder section
} while (1);

• Satisfies mutual exclusion, but not progress
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Algorithm 2
• Shared variables

• boolean flag[2];
initially flag [0] = flag [1] = false.

• flag [i] = true  Pi ready to enter its critical section

• Process Pi

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

• Satisfies mutual exclusion, but not progress requirement.
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Algorithm 3

• Combined shared variables of algorithms 1 and 2.
• Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

• Meets all three requirements; solves the critical-section 
problem for two processes.

Process Synchronization,CS PROBLEM,Synchronization
Hardware



Bakery Algorithm

• Before entering its critical section, process receives a number. 
Holder of the smallest number enters the critical section.

• If processes Pi and Pj receive the same number, if i < j, then Pi
is served first; else Pj is served first.

• The numbering scheme always generates numbers in 
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...
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Bakery Algorithm 

• Notation <≡ lexicographical order (ticket #, process id #)
• (a,b) < c,d) if a < c or if a = c and b < d
• max (a0,…, an-1) is a number, k, such that k ≥ ai for i - 0, 

…, n – 1

• Shared data

boolean choosing[n];

int number[n];

Data structures are initialized to falseand 0 respectively
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Bakery Algorithm 
do { 

choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ; 
while ((number[j] != 0) && (number[j,j] < number[i,i ])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);
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Synchronization Hardware

• Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {

boolean rv = target;

tqrget = true;

return rv;

}
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Mutual Exclusion with Test-and-Set

• Shared data: 
boolean lock = false;

• Process Pi

do {

while (TestAndSet(lock)) ;

critical section

lock = false;

remainder section

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware



Synchronization Hardware 

• Atomically swap two variables.

void Swap(boolean &a, boolean &b) {

boolean temp = a;

a = b;

b = temp;

}
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Mutual Exclusion with Swap

• Shared data (initialized to false): 
boolean lock;
boolean waiting[n];

• Process Pi

do {

key = true;

while (key == true) 

Swap(lock,key);

critical section

lock = false;

remainder section

}
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Deadlock and Starvation

• Deadlock– two or more processes are waiting indefinitely for an event that can 
be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

M M

signal(S); signal(Q);

signal(Q) signal(S);

• Starvation – indefinite blocking.  A process may never be removed from the 
semaphore queue in which it is suspended.

Process Synchronization,CS PROBLEM,Synchronization
Hardware



Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem
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Bounded-Buffer Problem

• Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1
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Bounded-Buffer Problem Producer Process

do { 
…

produce an item innextp
…

wait(empty);
wait(mutex);

…
addnextp to buffer

…
signal(mutex);
signal(full);

} while (1);
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Bounded-Buffer Problem Consumer Process

do { 
wait(full)
wait(mutex);

…
remove an item from buffer tonextc

…
signal(mutex);
signal(empty);

…
consume the item innextc

…
} while (1);
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Readers-Writers Problem

• Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0
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Readers-Writers Problem Writer Process

wait(wrt);
…

writing is performed
…

signal(wrt);
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Readers-Writers Problem Reader Process

wait(mutex);
readcount++;
if (readcount == 1)

wait(rt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):
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Dining-Philosophers Problem

• Shared data 

semaphore chopstick[5];

Initially all values are 1
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Dining-Philosophers Problem 
• Philosopher i:

do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);

Process Synchronization,CS PROBLEM,Synchronization
Hardware



Critical Regions

• High-level synchronization construct

• A shared variable v of type T, is declared as:

v: shared T

• Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

• While statement S is being executed, no other process can access 
variable v. 
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Critical Regions

• Regions referring to the same shared variable exclude each other in 
time.

• When a process tries to execute the region statement, the Boolean 
expression B is evaluated.  If B is true, statement S is executed.  If it is 
false, the process is delayed until B becomes true and no other process 
is in the region associated with v.
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Example – Bounded Buffer

• Shared data:

struct buffer {

int pool[n];

int count, in, out;

}
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Bounded Buffer Producer Process

• Producer process inserts nextp into the shared buffer

region buffer when( count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}
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Bounded Buffer Consumer Process

• Consumer process removes an item from the shared buffer and puts it 
in nextc

region buffer when (count > 0) {
nextc = pool[out];

out = (out+1) % n;
count--;

}
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Implementation region x when B do S

• Associate with the shared variable x, the following variables:

semaphore mutex, first-delay, second-delay;
int first-count, second-count;

• Mutually exclusive access to the critical section is provided by 
mutex.

• If a process cannot enter the critical section because the Boolean 
expression B is false, it initially waits on the first-delay semaphore; 
moved to the second-delay semaphore before it is allowed to 
reevaluate B.
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Implementation

• Keep track of the number of processes waiting on first-delay and 
second-delay, with first-count and second-countrespectively.

• The algorithm assumes a FIFO ordering in the queuing of processes 
for a semaphore.

• For an arbitrary queuing discipline, a more complicated 
implementation is required.
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Monitors

• High-level synchronization construct that allows the safe sharing of an 
abstract data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure bodyP1 (…) {

. . .
}
procedure bodyP2 (…) {

. . .
} 
procedure bodyPn (…) {

. . .
} 
{

initialization code
}

}
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Monitors

• To allow a process to wait within the monitor, a condition
variable must be declared, as

condition x, y;

• Condition variable can only be used with the operations 
wait and signal.

• The operation
x.wait();

means that the process invoking this operation is suspended until 
another process invokes

x.signal();
• The x.signaloperation resumes exactly one suspended process.  

If no process is suspended, then the signaloperation has no 
effect.
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Schematic View of a Monitor
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Monitor With Condition Variables
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Dining Philosophers Example
monitor dp
{

enum{thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) // following slides
void putdown(int i) // following slides
void test(int i) // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}
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Dining Philosophers

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}
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Dining Philosophers

void test(int i) {
if ( (state[(I + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}
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Monitor Implementation Using Semaphores

• Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next-count = 0;

• Each external procedure F will be replaced by
wait(mutex);

…
body of F;

…
if (next-count > 0)

signal(next)
else 

signal(mutex);

• Mutual exclusion within a monitor is ensured.
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Monitor Implementation

• For each condition variable x, we  have:
semaphore x-sem; // (initially  = 0)
int x-count = 0;

• The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;
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Monitor Implementation

• The operation x.signalcan be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}
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