
Process Synchronization

• Background

• The Critical-Section Problem

• Synchronization Hardware

• Semaphores

• Classical Problems of Synchronization

Process Synchronization,CS PROBLEM, Synchronization Hardware

Background

• Concurrent access to shared data may result in data inconsistency.

• Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes.

• Shared-memory solution to bounded-butter problemallows at mostn
– 1 items in buffer at the same time. A solution, where allN buffers
are used is not simple.

• Suppose that we modify the producer-consumer code by adding a variable
counter, initialized to 0 and incremented each time a new item is added to the
buffer

Process Synchronization,CS PROBLEM, Synchronization Hardware

Bounded-Buffer

• Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded-Buffer

• Producer process

item nextProduced;

while (1) {

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded-Buffer

• Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded Buffer

• The statements

counter++;
counter--;

must be performed atomically.

• Atomic operation means an operation that completes in its entirety
without interruption.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded Buffer

• The statement “count++” may be implemented in machine language
as:

register1 = counter

register1 = register1 + 1
counter = register1

• The statement “count—” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded Buffer

• If both the producer and consumer attempt to update the buffer
concurrently, the assembly language statements may get interleaved.

• Interleaving depends upon how the producer and consumer processes
are scheduled.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded Buffer

• Assume counter is initially 5. One interleaving of statements is:

producer: register1 = counter(register1 = 5)
producer: register1 = register1 + 1(register1 = 6)
consumer: register2 = counter(register2 = 5)
consumer: register2 = register2 – 1(register2 = 4)
producer: counter = register1(counter = 6)
consumer: counter = register2(counter = 4)

• The value of count may be either 4 or 6, where the correct result
should be 5.

Process Synchronization,CS PROBLEM,Synchronization Hardware

Race Condition

• Race condition: The situation where several processes access – and
manipulate shared data concurrently. The final value of the shared
data depends upon which process finishes last.

• To prevent race conditions, concurrent processes must be
synchronized.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

The Critical-Section Problem
• n processes all competing to use some shared data

• Each process has a code segment, called critical section, in
which the shared data is accessed.

• Problem – ensure that when one process is executing in its
critical section, no other process is allowed to execute in its
critical section.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Solution to Critical-Section Problem
1. Mutual Exclusion. If processPi is executing in its

critical section, then no other processes can be executing in
their critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their critical
section, then the selection of the processes that will enterthe
critical section next cannot be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted.
�Assume that each process executes at a nonzero speed
�No assumption concerning relative speed of then processes.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Initial Attempts to Solve Problem

• Only 2 processes, P0 and P1

• General structure of process Pi (other process Pj)

do {

entry section

critical section

exit section

reminder section

} while (1);

• Processes may share some common variables to synchronize their
actions.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Algorithm 1

• Shared variables:
• int turn ;

initially turn = 0
• turn - i Pi can enter its critical section

• Process Pi

do {
while (turn != i) ;

critical section
turn = j ;

reminder section
} while (1);

• Satisfies mutual exclusion, but not progress

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Algorithm 2
• Shared variables

• boolean flag[2];
initially flag [0] = flag [1] = false.

• flag [i] = true Pi ready to enter its critical section

• Process Pi

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

• Satisfies mutual exclusion, but not progress requirement.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Algorithm 3

• Combined shared variables of algorithms 1 and 2.
• Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

• Meets all three requirements; solves the critical-section
problem for two processes.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bakery Algorithm

• Before entering its critical section, process receives a number.
Holder of the smallest number enters the critical section.

• If processes Pi and Pj receive the same number, if i < j, then Pi
is served first; else Pj is served first.

• The numbering scheme always generates numbers in
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Critical section for n processes

Bakery Algorithm

• Notation <≡ lexicographical order (ticket #, process id #)
• (a,b) < c,d) if a < c or if a = c and b < d
• max (a0,…, an-1) is a number, k, such that k ≥ ai for i - 0,

…, n – 1

• Shared data

boolean choosing[n];

int number[n];

Data structures are initialized to falseand 0 respectively

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bakery Algorithm
do {

choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ;
while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Synchronization Hardware

• Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {

boolean rv = target;

tqrget = true;

return rv;

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Mutual Exclusion with Test-and-Set

• Shared data:
boolean lock = false;

• Process Pi

do {

while (TestAndSet(lock)) ;

critical section

lock = false;

remainder section

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Synchronization Hardware

• Atomically swap two variables.

void Swap(boolean &a, boolean &b) {

boolean temp = a;

a = b;

b = temp;

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Mutual Exclusion with Swap

• Shared data (initialized to false):
boolean lock;
boolean waiting[n];

• Process Pi

do {

key = true;

while (key == true)

Swap(lock,key);

critical section

lock = false;

remainder section

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Deadlock and Starvation

• Deadlock– two or more processes are waiting indefinitely for an event that can
be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

M M

signal(S); signal(Q);

signal(Q) signal(S);

• Starvation – indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded-Buffer Problem

• Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded-Buffer Problem Producer Process

do {
…

produce an item innextp
…

wait(empty);
wait(mutex);

…
addnextp to buffer

…
signal(mutex);
signal(full);

} while (1);

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded-Buffer Problem Consumer Process

do {
wait(full)
wait(mutex);

…
remove an item from buffer tonextc

…
signal(mutex);
signal(empty);

…
consume the item innextc

…
} while (1);

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Readers-Writers Problem

• Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Readers-Writers Problem Writer Process

wait(wrt);
…

writing is performed
…

signal(wrt);

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Readers-Writers Problem Reader Process

wait(mutex);
readcount++;
if (readcount == 1)

wait(rt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Dining-Philosophers Problem

• Shared data

semaphore chopstick[5];

Initially all values are 1

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Dining-Philosophers Problem
• Philosopher i:

do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Critical Regions

• High-level synchronization construct

• A shared variable v of type T, is declared as:

v: shared T

• Variable v accessed only inside statement

region v when B do S

where B is a boolean expression.

• While statement S is being executed, no other process can access
variable v.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Critical Regions

• Regions referring to the same shared variable exclude each other in
time.

• When a process tries to execute the region statement, the Boolean
expression B is evaluated. If B is true, statement S is executed. If it is
false, the process is delayed until B becomes true and no other process
is in the region associated with v.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Example – Bounded Buffer

• Shared data:

struct buffer {

int pool[n];

int count, in, out;

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded Buffer Producer Process

• Producer process inserts nextp into the shared buffer

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Bounded Buffer Consumer Process

• Consumer process removes an item from the shared buffer and puts it
in nextc

region buffer when (count > 0) {
nextc = pool[out];

out = (out+1) % n;
count--;

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Implementation region x when B do S

• Associate with the shared variable x, the following variables:

semaphore mutex, first-delay, second-delay;
int first-count, second-count;

• Mutually exclusive access to the critical section is provided by
mutex.

• If a process cannot enter the critical section because the Boolean
expression B is false, it initially waits on the first-delay semaphore;
moved to the second-delay semaphore before it is allowed to
reevaluate B.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Implementation

• Keep track of the number of processes waiting on first-delay and
second-delay, with first-count and second-countrespectively.

• The algorithm assumes a FIFO ordering in the queuing of processes
for a semaphore.

• For an arbitrary queuing discipline, a more complicated
implementation is required.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Monitors

• High-level synchronization construct that allows the safe sharing of an
abstract data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure bodyP1 (…) {

. . .
}
procedure bodyP2 (…) {

. . .
}
procedure bodyPn (…) {

. . .
}
{

initialization code
}

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Monitors

• To allow a process to wait within the monitor, a condition
variable must be declared, as

condition x, y;

• Condition variable can only be used with the operations
wait and signal.

• The operation
x.wait();

means that the process invoking this operation is suspended until
another process invokes

x.signal();
• The x.signaloperation resumes exactly one suspended process.

If no process is suspended, then the signaloperation has no
effect.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Schematic View of a Monitor

Process Synchronization,CS PROBLEM, Synchronization Hardware

Monitor With Condition Variables

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Dining Philosophers Example
monitor dp
{

enum{thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) // following slides
void putdown(int i) // following slides
void test(int i) // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Dining Philosophers

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Dining Philosophers

void test(int i) {
if ((state[(I + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Monitor Implementation Using Semaphores

• Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

• Each external procedure F will be replaced by
wait(mutex);

…
body of F;

…
if (next-count > 0)

signal(next)
else

signal(mutex);

• Mutual exclusion within a monitor is ensured.

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Monitor Implementation

• For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

• The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

Process Synchronization,CS PROBLEM,Synchronization
Hardware

Monitor Implementation

• The operation x.signalcan be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}

Process Synchronization,CS PROBLEM,Synchronization
Hardware

