‘o SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

2

Accredited by NBA - AICTE and Accredited by NAAC - UGC with A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19C5B201 - OPERATING SYSTEMS
IIYEAR/IV SEMESTER
UNIT - II Process Scheduling And Synchronization

Topic: SEMAPHORES

Mr. K.S Mohan
Assistant Professor

Department of Information Technology

SNSCT/IT/OPERATING SYSTEMS/UNIT -
II/SEMAPHORES/K.S.MOHAN

e

RTINS

0 ¢ BT »

I YIS
g

Semaphores

JA semaphore is an object that consists of a

counter, a waiting list of processes and two
methods (e.g., functions): signal and wait.

. semaphore
method signal

I counter I

| waiting list -]

method wait

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

Semaphore Method: wait

void wait(sem S)

{

S.count--;
if (S.count < 0) {

add the caller to the waiting list;
block () ;

}
U After decreasing the counter by 1, if the counter
value becomes negative, then

“»add the caller to the waiting list, and then
“*block itself.

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

o

~ al
»

HTTols

Semaphore Method: signal

void signal (sem S)

{
S.count++;
if (S.count <= 0) {
remove a process P from the waiting list:
resume (P) ;
}
}

U After increasing the counter by 1, if the new
counter value is not positive, then

“*remove a process P from the waiting list,
“*resume the execution of process P, and return

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ al
»

HTTols

Important Note: 1/4

S.count--; S.count++;

if (S.count<0) { if (S.count<=0) {
add to list ; remove P;
block () ; resume (P) ;

} }

QIf S.count < 0,abs (S.count) is the
number of waiting processes.

(W This is because processes are added to (resp.,

removed from) the waiting list only if the
counter value is < 0 (resp., <= 0).

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ o
~»

TTTnls

Important Note: 2/4

S.count--; S.count++;

if (S.count<0) { if (S.count<=0) {
add to list; remove P;
block () ; resume (P) ;

} }

(JThe waiting list can be implemented with a
queue if FIFO order is desired.

L However, the correctness of a program should
not depend on a particular implementation of
the waiting list.

L Your program should not make any assumption
about the ordering of the waiting list. 5

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ a
»
Hryronls

Important Note: 3/4

S.count--; S.count++;

if (S.count<0) { if (S.count<=0) {
add to list; remove P;
block () ; resume (P) ;

} }

U The caller may be blocked in the call to wait ().

(JThe caller never blocks in the call to signal ().
If S.count > 0, signal () returns and the
caller continues. Otherwise, a waiting process is
released and the caller continues. In this case, rwo
processes continue.

O

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ al
»

HTTols

The Most Important Note: 4/4

S.count--; S.count++;

if (S.count<0) { if (S.count<=0) {
add to list; remove P;
block () ; resume (P) ;

} }

Udwait () and signal () must be executed
atomically (i.e., as one uninterruptible unit).

U Otherwise, race conditions may occur.

J Homework: use execution sequences to show
race conditions if wait () and/or signal () is

not executed atomically.

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ al
»

HTTols

N
*
éz;;?;jf

Three Typical Uses of Semaphores

(JThere are three typical uses of semaphores:
“*mutual exclusion:
Mutex (i.e., Murual Exclusion) locks
“*count-down lock:
Keep in mind that semaphores have a counter.
“*notification:
Indicate an event has occurred.

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ o
~»

TTTnls

Use 1: Mutual Exclusion (Lock)

initialization is important
semaphore<::::js—_

int count = 0;
Process 1 Process 2
while (1) { while (1) {
// do something _entry // do something
IS.wait(); S.wait() ; I
teomnttt... Crifical sections U counto=il
| S.signal() ; S.signal(); |
// do something ayit // do something
} }

LWhat if the initial value of S is zero?

S is a binary semaphore (similar to a /ock). .

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ %

\ Pywy T
Use 2: Count-Down Counter
semaphore S ={§}
Process 1 __.-': Process 2
while (1) { ::' while (1) {
// do somgthing // do something
S.wait() ;S S.wait () ;
s o at njost 3 processes can be here!!! I
: S.signalX () ; S.signal () ;
// do sbmething // do something
} y }

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ L
»
I1Y11971%

v
.

Use 3: Notification

semaphore S1 = 1, S2 = 0;

process 1 process 2
while (1) { while (1) {
do something // do something
S1.wait () ; jeotify S2.wait() ;
| cout << “17; cout << “27;
S2.signal () ; [notify Sl.signal();|
// do something // do something

} }
U Process 1 uses S2 . signal () to notify process
2, indicating “lI am done. Please go ahead.”

UTheoutputisl 2 1 2 1 2 ...
(I What if both S1 and S2 are both 0’s or both 1°s?
UWhatifsSl=0and s2=1? 1

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ e
N
HIYTIoNT

Lock Example: Dining

Philosophers
Five philosophers are in a
thinking - eating cycle.
When a philosopher gets
hungry, he sits down, picks
up fwo nearest chopsticks, O
and eats.

A philosopher can eat only
if he has bot/ chopsticks.

After eating, he puts down
both chopsticks and thinks.

This cycle continues.

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ a
»
Hryronls

Dining Philosopher: Ideas

W Chopsticks are shared outer ('ririca’l section
items (by two philosophers) /eft chop locked
and must be protected. Sempphore C[5] l = 1;
W Each chopstick has a
sema hm")e with initial CliPwait() ;
P [(1+1) %5 D wait () ;
value 1.
J A philosopher calls | hf‘s £800 an_d cats ‘
wait () before picks up a |[LCL(1+1)%5] .signal ()}
C[i] .signal() ;

chopstick and calls {
signal () to release it. \

inner critical section
right chop locked .

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~, e
>
TS

Dining Philosophers: Code
semaphore C[5] = 1;

philosopher i wait for my left chop
while (1) {

// thinkin

Cli] .wait ()
C[(i+1)%5].wait (
// eating
C[(i+1l) %5] .signal (
C[i] .signal () !

// finishes eating

wait for my right chop

release my right chop

release my left chop

Does this solution work‘.l’4

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ e
N
HIYTIoNT

Dining Philosophers: Deadlock!

If all five philosophers
sit down and pick up
their left chopsticks at
the same time, this
program has a circular
waiting and deadlocks.

An easy way to remove
this deadlock is to
introduce a weirdo who
picks up his right
chopstick first!

15

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ a
»
Hryronls

Dining Philosophers: A Better Idea

semaphore C[5] = 1;
philosopher i (0, 1, 2, 3)
while (1) {

Philosopher 4: the weirdo

while (1) {

// eating

;C[(i+1)%5]. ! 1] .signal() ;

// finishes ejting;

lock left chop lock right chop

16

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

N
gl
RI=Y) v 44

82

v
W

Dining Philosophers: Questions

JThe following are some important questions for
you to work on.

“*We choose philosopher 4 to be the weirdo.
Does this choice matter?

<*Show that this solution does not cause circular

waiting.

“*Show that this solution will not have circular
waiting if we have more than 1 and less than 5
weirdoes.

JThese questions may appear as exam problems.
17

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~

>

e

otz

Count-Down Lock Example

1 The naive solution to the
dining philosophers causes
circular waiting.

JIf only four philosophers are
allowed to sit down, no
deadlock can occur.

JWhy? If all four of them sit
down at the same time, the
right-most philosopher can
have both chopsticks!

JHow about fewer than four?
This is obvious.

s

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

>

e

otz

~ o
»
WY I197T5

Count-Down Lock Example

semaphore C[5]= 1.,
semaphore Chair = 4,

get a chair o
while (1) this is a count-down lock

// thij / that only allows 4 to go!
Chair. waltqj

Cli].wait();
Cl(i+1)%5] .wait() ;
// eating «— this is our old friend
C[(i+1l)%5] .signal() ;

C[i] .signal(); |
Chair.signal ()|

} release my chair
19

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

The Producer/Consumer Problem

U Suppose we have a

i" circular buffer of » slots.
JPointers in (resp., out)
points to the first empty
b (resp., filled) slot.
U Producer processes keep
e T ® out adding info into the
buffer
/ W Consumer processes keep
bounded-buffer retrieving info from the

buffer.

20

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

Problem Analysis

o O A producer deposits info into
Buf[in] and a consumer
retrieves info from Buf [out].

b Jin and out must be advanced.

" out = in is shared among producers.

U If Buf is full, producers should

buffer is implemented be blocked.
with an array Buf [1 J]f Buf is empty, consumers

should be blocked.

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

Wout is shared among consumers.

~

>

e

HTTols

%] "
e e

¢ G W' o
%j pr oducer consumer IO
it buff wait buffer
irc' oy notempty -J We need a sem.
to protect the
! buffer.
lock\buffer lock buffer
\ JA second sem.
\ 4 to block
% f producers if the
Y i , o
i & A third sem. to
unlock l))ﬁfef \ unlock buffer block
7 o
7 consumers if
ty(er i:'.l i)uffﬁr”i:: the buffer is
> t
n em P y no | empty.

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

Solution

no. of slots

semaphorm‘:ﬁ} NotEmpty=0, Mutex=1l;

producer consumer
while (1) { S while (1) {
NotFull.wait (). otEmpty.wait () ;
Mutex.wait () ; Mutex.wait () ;
Buf[in] = x; : x = Buf[out];
in = (in+l)%n; i out = (out+l)%n;
Mutex.signal() ; ‘Mutex.signal () ;
NotEmpty.signai{); NotFull) ignal () ;

}

critical section

23

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ al
»

I

Question

(J What if the producer code is modified as follows?
JAnswer: a deadlock may occur. Why?

while (1) {
Mutex.wait () ;

//////' NotFull .wait () ;
Buf[in] = x;

order changed

in = (in+l) %n;
NotEmpty.signal () ;
Mutex.signal () ;

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

shate
S0 AR

ESE
4

v
W

¢
b
~

The Readers/Writers Problem

JTwo groups of processes, readers and writers,
are accessing a shared resource by the following
rules:

“*Readers can read simultaneously.
“*Only one writer can write at any time.
“*When a writer is writing, no reader can read.

“*If there is any reader reading, all incoming
writers must wait. Thus, readers have higher

priority.

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~

>

e

otz

Problem Analysis

JWe need a semaphore to block readers if a
writer is writing.

Jd'When a writer arrives, it must be able to know
if there are readers reading. So, a reader count
is required which must be protected by a lock.

J This reader-priority version has a problem:
bounded waiting condition may be violated if
readers keep coming, causing the waiting
writers no chance to write.

26

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~

>

e

otz

\I
o2

N
Al N

"\
X

:--->% Reader

.~

increase
reader ent

;

am I the 1st?

read data

reduce
reader ent

'

am | the
last?

(JWhen a reader comes
in, it increase the
count.

L If it is the 15 reader,
waits until no writer is
writing,

(JReads data.

(d Decreases the counter.

, I Notifies the writer
/ that no reader is
' reading if it is the last.

27

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~

>

e

otz

~ e

>

0.
» W T
nn.
. Reader
[

|

| |_eader exe Writer 0 YWhen a writer
' comes in, it waits
I N <

| R — until no reader is
|

|

reading and no
writer is writing.
U Then, it writes data.

S U Finally, notifies
readers and writers
that no writer is in.

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

~ al
»
Hryronls

Solution

semaphore Mutex = 1, WrtMutex = 1;

int RdrCount;
reader writer
while (1) { while (1) {
Mutex.wait() ;
RdrCount++;
if (RdrCount == 1) |blocks both readers and writers
WrtMutex.wait() ; WrtMutex.wait() ;
Mutex.signal () ;
// read data // write data

Mutex.wait() ;

RdrCount--;
if (RdrCount == 0)
WrtMutex.signal () ; WrtMutex.signal () ;
Mutex.signal () ;

} } 29

SNSCT/IT/OPERATING SYSTEMS/UNIT -
[I/SEMAPHORES/K.S.MOHAN

