

1

Swapping

¥ What : temporarily move inactive process to

backing store (e.g., fast disk). At some later time,

return it to main memory for continued execution.

¥ Why : permit other processes to use memory

resources (hence each process can be bigger)

¥ Who : decision of what process to swap made by

medium-term scheduler

Schematic view of Swapping

¥

¥

Swapping

Some possibilities of when to swap

— if you have 3 processes, start to swap one out when its

quantum expires while two is executing. Goal is to have

third process in place when twos quantum expires
(i.e., overlap computation with disk i/o)

— context switch time is very high if you cant achieve this

Another option: roll out lower priority process in favor of

higher priority process. Roll in the lower priority process

when the higher priority one finishes

Swapping

¥ If you have static address binding (i.e., compile or load

time binding) have to swap process back into same
memory space. Why?

¥ If you have execution-time address binding, then you can
swap the process back into a different memory space.

¥ Disk is slow and the transfer time needed is proportional to

the size of the process, so it is useful if processes can specify

the parts of allocated memory that are unused to avoid

having to transfer.

3

Swapping

Process cannot be swapped until completely idle. Example

of a problem: overlapped DMA input/output. (This
requires that you have buffer space allocated in memory

when the i/o request comes back)

Note that in general swapping in this form (i.e., with this

large sized granularity) is not very common now.

¥

¥

¥

Contiguous Allocation

Divide memory into partitions. Initially consider two

partitions--one for the resident operating system and one

for a user process.

Where should the operating system go--low memory or

high memory?

Frequently put the operating system in low memory

because this is where the interrupt vector is located.

Also this permits the user partition to be expanded

without running into the operating system (a factor when

we have more than one partition or if we run the same

binaries on different system configurations).

Memory Partitions

0Low memory

High memory

Resident
Operating System

User Processes (program and data)

Single Partition Allocation

¥ Initial location of the users process in memory is not 0

¥ The relocation register (base register) points to the first

location in the users partition. Users logical addresses
are adjusted by the hardware to produce the physical

address. (Address binding delayed until execution

time.)

¥ Relocation register value is static during program

execution, hence all of the OS must be present (it might

be used). Otherwise have to relocate user code/data on

the fly! In other words we cannot have transient OS

code.

¥

¥

¥

Single Partition Allocation

How about memory references passed from the

user process to the OS (for example, blocks of

memory passed as an argument to a I/O routine)?

The address must be translated from users

logical address space to the physical address

space. Other arguments dont get translated (e.g.,

counts). Hence OS software has to handle these

translations.

Limit Register

¥ How do we protect the OS from accidental or

intentional interference from user processes?

¥ Add a limit register to the address mapping

scheme

Multiple-Partition Allocation

Goal: allocate memory to multiple processes (which permits rapid

switches, for example)
Simple scheme: fixed-size partition
— memory divided into several partitions of fixed size
— each partition holds one process
— partition becomes free when process terminates; another process

picked from the ready queue gets the free partition
— number of partitions bounds the degree of multiprogramming
— originally used in the IBM OS/360 operating system (MFT)

— No longer used

Limit Register

CPU < + memory
logical

addresses

yes

no

limit

register
relocation

register

physical

addresses

trap: addressing error

¥

¥

¥

¥

Multiple-Partition Allocation

Dynamic Partition

Memory is partitioned dynamically

— Hole: block of available memory

— Holes of various size are scattered throughout memory Process

still must occupy contiguous memory

OS keeps a table listing which parts of memory are

available

— Allocated partitions
— Free partitions (hole)

When a process arrives, the OS searches for a part of

memory that is large enough to hold the process. Allocates

only the amount of needed memory.

Multiple-Partition Allocation

Dynamic Partition

0

100

2000

operating

system

p1

500K

600

operating

system

p2

800K

1400

operating

system

 p1

p1

p2

Multiple-Partition Allocation

Dynamic Partition

0
p3

 400K

100

600

1400
1800

2000

34

operating
system

p1

p2

operating
system

p1

p4

600K

cant p2
done

p4 gets
alloc.

1200

operating
system

p1

p2
p4

p3 p3

Multiple-Partition Allocation Dynamic

Partition

0p5 requests 300 K
but cant obtain it

200K free 100 since there is no
 large enough

200K free 600 contiguous block
 free. Note that

1200 there is 400 K 1400 free

in the system 1800 though...
2000

operating
system

p1

p4

p3

Multiple-Partition Allocation

Dynamic Partition

¥ This is an example of external fragmentation--

sufficient amount of free memory to satisfy request

but not in a contiguous block.

¥ We used a first fit algorithm this time to decide

where to allocate space--what are some strategies

for finding a free hole to fill?

¥

¥

¥

Multiple-Partition Allocation

Dynamic Partition

first fit algorithm: allocate the first hole that is big enough.

Searching can start either at beginning of set of holes or

where the previous first-fit search ended. We quit when

we find a free hole that is large enough. best fit: allocate

the smallest hole that is big enough. Must search entire

list to find it if you dont keep free list ordered by size.

worst fit: allocate the largest hole. Again may need to

search entire free list if not ordered. Produces the largest

leftover hole, which may be less likely to create external

fragmentation.

Multiple-Partition Allocation

Dynamic Partition

Simulation shows that first-fit and best-fit are

better than worst-fit for time and storage use.

First-fit is faster than best-fit

First-fit and best-fit are similar in storage use.

50% rule--up to 1/3 of memory is lost to external

fragmentation in first-fit (N allocated, 1/2 N lost)

¥

¥

¥
¥

¥

Multiple-Partition Allocation

Dynamic Partition

General comments:
— memory protection is necessary to prevent state interactions. This

is effected by the limit register.
— base registers are required to point to the current partition

In general, blocks are allocated in some quantum (e.g., power or 2). No

point in leaving space free if you cant address it or if it is too small to

be of any use at all. Also there is an expense in keeping track of free

space (free list; traversing list; etc.).
This results in lost space--allocated but not required by process
Internal fragmentation: difference between required memory and

allocated memory.
Internal fragmentation also results from estimation error and

management overhead.

External Fragmentation

External fragmentation can be controlled with compaction.

— requires dynamic address binding (have to move pieces

around)

— can be quite expensive in time

— some schemes try to control expense by only doing

certain kinds of coalescing--e.g., on power of 2

boundary. (Topic of a data structures class.)

— OS approach can also be to roll out/roll in all

processes, returning processes to new addresses--no

additional code required!

