

Operating Systems
UNIT -3

 Paging

1

Overview

• Paging

• Page Tables
• TLB

• Shared Pages

• Hierarchical Pages
• Hashed Pages

• Inverted Pages
• Uses

2

Address Translation Scheme

■ Address generated by CPU is divided into:

● Page number (p) – used as an index into a page table which contains

base address of each page in physical memory
● Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit

page number page offset

p d

m -n n

● For given logical address space 2m and page size 2n

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

Paging (Cont.)

• Calculating internal fragmentation
– Page size = 2,048 bytes
– Process size = 72,766 bytes
– 35 pages + 1,086 bytes
– Internal fragmentation of 2,048 - 1,086 = 962 bytes
– Worst case fragmentation = 1 frame – 1 byte
– On average fragmentation = 1 / 2 frame size
– So small frame sizes desirable?
– But each page table entry takes memory to track
– Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

• Process view and physical memory now very different
• By implementation process can only access its own memory

Free Frames

Before allocation After allocation

Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table
• Page-table length register (PTLR) indicates size of the

page table

• In this scheme every data/instruction access requires two
memory accesses
– One for the page table and one for the data / instruction

• The two memory access problem can be solved
– by the use of a special fast-lookup hardware cache
– called associative memory or translation look-aside buffers

(TLBs)

Implementation of Page Table

• Some TLBs store address-space identifiers
(ASIDs) in each TLB entry –
– uniquely identifies each process

– provide address-space protection for that process
– Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster
access next time
– Replacement policies must be considered
– Some entries can be wired down for permanent fast access

Associative Memory

• Associative memory – parallel search

Page # Frame #

• Address translation (p, d)

– If p is in associative register, get frame # out
– Otherwise get frame # from page table in memory

Paging Hardware With TLB

Effective Access Time

• Associative Lookup
– Extremely fast

• Hit ratio = α

– Hit ratio – percentage of times that a page number is found in the
associative memory ;

– Consider α = 80%, 100ns for memory access

• Consider α = 80%, 100ns for memory access
– EAT = 0.80 x 100 + 0.20 x 200 = 120ns

• Consider hit ratio α = 99, 100ns for memory access

– EAT = 0.99 x 100 + 0.01 x 200 = 101ns

Memory Protection

• Memory protection implemented
– by associating protection bit with each frame

– to indicate if read-only or read-write access is allowed
– Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:
– “valid” indicates that the associated page

• is in the process’ logical address space, and is thus a legal page
– “invalid” indicates that the page I

• is not in the process’ logical address space

– Or use page-table length register (PTLR)

– Page Table Entries (PTEs) can contai more information

• Any violations result in a trap to the kernel

Valid (v) or Invalid (i) Bit In A Page Table

Shared Pages

• Shared code
– One copy of read-only (reentrant) code shared among processes

(i.e., text editors, compilers, window systems)
– Similar to multiple threads sharing the same process space

– Also useful for interprocess communication if sharing of read-write
pages is allowed

• Private code and data
– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear anywhere in the
logical address space

Shared Pages Example

Structure of the Page Table

• Memory structures for paging can get huge using straight-
forward methods
– Consider a 32-bit logical address space as on modern computers

– Page size of 4 KB (212)
– Page table would have 1 million entries (232 / 212)

– If each entry is 4 bytes -> 4 MB of physical address space /
memory for page table alone

• That amount of memory used to cost a lot
• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging
• Hashed Page Tables

• Inverted Page Tables

Hierarchical Page Tables

• Break up the logical address space into multiple page
tables

• A simple technique is a two-level page table
• We then page the page table

Two-Level Page-Table Scheme

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page size) is
divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided
into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:
•

• where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

• Known as forward-mapped page table

Address-Translation Scheme

64-bit Logical Address Space

■ Even two-level paging scheme not sufficient
■ If page size is 4 KB (212)
● Then page table has 252 entries
● If two level scheme, inner page tables could be 210 4-byte entries
● Address would look like

● Outer page table has 242 entries or 244 bytes
● One solution is to add a 2nd outer page table
● But in the following example the 2nd outer page table is still 234 bytes in

size
And possibly 4 memory access to get to one physical memory

location

Three-level Paging Scheme

Hashed Page Tables

• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the same
location

• Each element contains
– (1) the virtual page number
– (2) the value of the mapped page frame
– (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for
a match
– If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables
– Similar to hashed but each entry refers to several pages (such as 16)

rather than 1
– Especially useful for sparse address spaces (where memory

references are non-contiguous and scattered)

Hashed Page Table

Inverted Page Table

• Rather than each process having a page table and keeping
track of all possible logical pages,
– track all physical pages

• One entry for each real page of memory
• Entry consists of

– the virtual address of the page stored in that real memory location,
– information about the process that owns that page

• Decreases memory needed to store each page table
– but increases time needed to search the table when a page reference

occurs

• Use hash table to limit the search to one/few page-table entries
– TLB can accelerate access

• But how to implement shared memory?
– One mapping of a virtual address to the shared physical address

Inverted Page Table Architecture

Functionality enhanced by page tables

• Code (instructions) is read-only
– A bad pointer can’t change the program code

• Dereferencing a null pointer is an error caught by hardware
– Don’t use the first page of the virtual address space – mark it as

invalid – so references to address 0 cause an interrupt
• Inter-process memory protection

– My address XYZ is different that your address XYZ
• Shared libraries

– All running C programs use libc
– Have only one (partial) copy in physical memory, not one per

process
– All page table entries mapping libc point to the same set of physical

frames
• DLL’s in Windows

29

More functionality

• Generalizing the use of “shared memory”
– Regions of two separate processes’s address spaces map to the

same physical frames
– Faster inter-process communication

• Just read/write from/to shared memory
• Don’t have to make a syscall

– Will have separate Page Table Entries (PTEs) per process, so can
give different processes different access rights

• E.g., one reader, one writer

• Copy-on-write (CoW), e.g., on fork()
– Instead of copying all pages, create shared mappings of parent

pages in child address space

• Make shared mappings read-only for both processes
• When either process writes, fault occurs, OS “splits” the page

30

Uses

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space

– e.g., into region with base ‘X’
• accessing virtual address ‘X+N’ refers to offset ‘N’ in file

• initially, all pages in mapped region marked as invalid
– OS reads a page from file whenever invalid page accessed

– OS writes a page to file when evicted from physical memory
• only necessary if page is dirty

31

• Use “soft faults”
– faults on pages that are actually in memory,

– but whose PTE entries have artificially been marked as invalid

• That idea can be used whenever it would be useful to trap
on a reference to some data item

• Example: debugger watchpoints
• Limited by the fact that the granularity of detection is the

page

32

