
Virtual Memory

• Background

• Demand Paging

Virtual Memory: Background – Demand paging

Background

• Code needs to be in memory to execute, but entire program
rarely used

• Error code, unusual routines, large data structures

• Entire program code not needed at same time

• Consider ability to execute partially-loaded program
• Program no longer constrained by limits of physical memory
• Each program takes less memory while running -> more programs run

at the same time
• Increased CPU utilization and throughput with no increase in response time or

turnaround time

• Less I/O needed to load or swap programs into memory -> each user
program runs faster

Virtual Memory: Background – Demand paging

Background (Cont.)

•Virtual memory – separationof
user logical memoryfrom physical
memory

• Only part of the programneeds to be in memory for
execution

• Logical address space can therefore be much larger
than physical address space

• Allows address spaces to be shared by several
processes

• Allows for more efficient process creation
• More programs running concurrently
• Less I/Oneeded to load or swap processes

Virtual Memory: Background – Demand paging

Background (Cont.)

•Virtual address space – logical view
of how process is stored in memory

• Usually start at address 0, contiguous addresses
until end of space

• Meanwhile, physical memory organized in page
frames

• MMU must map logical to physical

•Virtual memory can be implemented
via:

• Demand paging
• Demand segmentation

Virtual Memory: Background – Demand paging

Virtual Memory That is Larger Than Physical Memory

Virtual Memory: Background – Demand paging

Virtual-address Space

 Usually design logical address space for
stack to start at Max logical address and
grow “down” while heap grows “up”

 Maximizes address space use

 Unused address space between the
two is hole

 No physical memory needed
until heap or stack grows to
a given new page

 Enables sparse address spaces with
holes left for growth, dynamically linked
libraries, etc

 System libraries shared via mapping into
virtual address space

 Shared memory by mapping pages read-
write into virtual address space

 Pages can be shared during fork(),
speeding process creationVirtual Memory: Background – Demand paging

Shared Library Using Virtual Memory

Virtual Memory: Background – Demand paging

Demand Paging

• Could bring entire process into memory at
load time

• Or bring a page into memory only when it is
needed

• Less I/O needed, no unnecessary I/O
• Less memory needed
• Faster response
• More users

• Similar to paging system with swapping
(diagram on right)

• Page is needed reference to it
• invalid reference abort
• not-in-memory bring to memory

• Lazy swapper – never swaps a page into
memory unless page will be needed

• Swapper that deals with pages is apager

Virtual Memory: Background – Demand paging

Basic Concepts

• With swapping, pager guesses which pages will be used before
swapping out again

• Instead, pager brings in only those pages into memory

• How to determine that set of pages?
• Need new MMU functionality to implement demand paging

• If pages needed are alreadymemory resident
• No difference from non demand-paging

• If page needed and not memory resident
• Need to detect and load the page into memory from storage

• Without changing program behavior
• Without programmer needing to change code

Virtual Memory: Background – Demand paging

Valid-Invalid Bit

• With each page table entry a valid–invalid bit is associated
(v in-memory –memory resident, i not-in-memory)

• Initially valid–invalid bit is set toi on all entries
• Example of a page table snapshot:

• During MMU address translation, if valid–invalid bit in page
table entry isi page fault

Virtual Memory: Background – Demand paging

Page Table When Some Pages Are Not in Main Memory

Virtual Memory: Background – Demand paging

Page Fault

• If there is a reference to a page, first reference to that pagewill
trap to operating system:

page fault
1.Operating systemlooks at another table to decide:

• Invalid reference abort
• Just not in memory

2.Find free frame
3.Swap page into frame via scheduled disk operation
4.Reset tables to indicate page now in memory

Set validation bit =v
5.Restart the instruction that caused the page fault

Virtual Memory: Background – Demand paging

Steps in Handling a Page Fault

Virtual Memory: Background – Demand paging

Performance of Demand Paging
• Stages in Demand Paging (worse case)

1.Trap to the operating system

2.Save the user registers and process state

3.Determine that the interrupt was a page fault

4.Check that the page reference was legal and determine the location of the page on the disk

5.Issue a read from the diskto a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6.While waiting, allocate the CPU to some other user

7.Receive an interrupt from the disk I/O subsystem (I/O completed)

8.Save the registers and process state for the other user

9.Determine that the interrupt was from the disk

10.Correct the page table and other tables to show page is now in memory

11.Wait for the CPU to be allocated to this process again

12.Restore the user registers, process state, and new page table, and then resume the
interrupted instruction

Virtual Memory: Background – Demand paging

Performance of Demand Paging (Cont.)

• Three major activities
• Service the interrupt – careful coding means just several hundred instructions

needed
• Read the page – lots of time
• Restart the process – again just a small amount of time

• Page Fault Rate 0 ≤ p ≤ 1
• if p = 0 no page faults
• if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 –p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in)

Virtual Memory: Background – Demand paging

Demand Paging Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds
• EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent

• 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

• p < .0000025
• < one page fault in every 400,000 memory accesses

Virtual Memory: Background – Demand paging

Before Process 1 Modifies Page C

Virtual Memory: Background – Demand paging

After Process 1 Modifies Page C

Virtual Memory: Background – Demand paging

