Page Replacement

* Preventover-allocation of memory by modifying page-
fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page
transfers — only modified pages are written to disk

» Page replacement completes separation between logical
memory and physical memory — large virtual memory
can be provided on a smaller physical memory



Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If  there s a free frame, use It
- If there is no free frame, use a page replacement algorithm
select a victim frame
- Write victim frame to disk If dirty

3. Bring the desired page into the (newly) free frame; updiage
page and frame tables

4. Continue the process by restarting the instruction thased the
trap

Note now potentially 2 page transfers for page fault — inerepEAT



Page Replacement
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Page and Frame Replacement Algorithms

* Frame-allocation algorithm determines
 How many frames to give each process
» Which frames to replace

» Page-replacement algorithm
« Want lowest page-fault rate on both first access and re-access

« Evaluate algorithniy running it on a particular string of memory
references (reference string) and computing the numbeiagé p
faults on that string

 String is just page numbers, not full addresses
* Repeated access to the same page does not cause a page fault
» Results depend on number of frames available

* In all our examples, theeference string of referenced page
numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
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Graph of Page Faults Versus The Number of Frames
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First-In-First-Out (FIFO) Algorithm

» Reference string/,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time [peeps)
reference string
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15 page faults

« Can vary by reference string: consider 1,2,3,451122,3,4,5

» Adding more frames can cause more page faults!
« Belady’ sAnomaly
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FIFO Illustrating Belady’ s Anomaly

16
o 14
S
S 12
o) \
g 10 \/\
Q
c 8
o
g 6 \\
S5 C
c 4
2
1 2 3 4 5 6
number of frames

Process creation — Page replacement



Optimal Algorithm

» Replace page that will not be used for longest period of time
* 9 is optimal for the example

e Used for measuring how well your algorithm performs

reference string
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Least Recently Used (LRU) Algorithm

» Use past knowledge rather than future
* Replace page that has not been used in the mosinamiotime
» Associate time of last use with each page

reference string
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12 faults — better than FIFO but worse than OPT
» Generally good algorithm and frequently used



