Page Replacement

* Preventover-allocation of memory by modifying page-
fault service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page
transfers — only modified pages are written to disk

» Page replacement completes separation between logical
memory and physical memory — large virtual memory
can be provided on a smaller physical memory

Need For Page Replacement

valid—invalid

1| load M
PC —
2 J 4 v 5| D
5 |v
3| M i 3| H
logical memory page table 4| load M
for user 1 for user 1
5 J
6 A
valid—invalid T E
0 A frame bit
N / physical
1 B 5 |v memory
2| D i
2 |v
3 E 7 |y

logical memory ~ Page table
for user 2 for user 2

Process creation — Page replacement

0 H frame bit 0| monitor
N/ - R
3 v

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there s a free frame, use It
- If there is no free frame, use a page replacement algorithm
select a victim frame
- Write victim frame to disk If dirty

3. Bring the desired page into the (newly) free frame; updiage
page and frame tables

4. Continue the process by restarting the instruction thased the
trap

Note now potentially 2 page transfers for page fault — inerepEAT

Page Replacement

frame valid—invalid bit

N ¥
O |1
flv

page table

change
to invalid

swap out
victim

@ £ victim

reset page
table for
new page

swap
desired
page in

physical
memory

Process creation — Page replacement

Page and Frame Replacement Algorithms

* Frame-allocation algorithm determines
 How many frames to give each process
» Which frames to replace

» Page-replacement algorithm
« Want lowest page-fault rate on both first access and re-access

« Evaluate algorithniy running it on a particular string of memory
references (reference string) and computing the numbeiagé p
faults on that string

 String is just page numbers, not full addresses
* Repeated access to the same page does not cause a page fault
» Results depend on number of frames available

* In all our examples, theeference string of referenced page
numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Process creation — Page replacement

Graph of Page Faults Versus The Number of Frames

16 \
n 14
E \
J 12
2 X
@ 10
a
S 8 \\
)
o
c 4 \'—=-—
2
1 2 3 4 5 6

number of frames

Process creation - Page replacement

First-In-First-Out (FIFO) Algorithm

» Reference string/,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time [peeps)
reference string

i 1Y 24034042 3032201701

]

AAfE PEWEEE B
| 1o o] o] ol fo| 8| 2] 2] [2] o] 1 qgﬂ
JUWW Dol B 2R
page frames

15 page faults

« Can vary by reference string: consider 1,2,3,451122,3,4,5

» Adding more frames can cause more page faults!
« Belady’ sAnomaly

Process creation — Page replacement

FIFO Illustrating Belady’ s Anomaly

16
o 14
S
S 12
o) \
g 10 \/\
Q
c 8
o
g 6 \\
S5 C
c 4
2
1 2 3 4 5 6
number of frames

Process creation — Page replacement

Optimal Algorithm

» Replace page that will not be used for longest period of time
* 9 is optimal for the example

e Used for measuring how well your algorithm performs

reference string
ra 124 304 2808212483781

il B F B B

IR) 0
W & B & & U
page frames

Process creation — Page replacement

Least Recently Used (LRU) Algorithm

» Use past knowledge rather than future
* Replace page that has not been used in the mosinamiotime
» Associate time of last use with each page

reference string

/70 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
4| 4] 4] o
[(o [o| o] [o| |o] o] 3] |3 o o]
B

page frames

12 faults — better than FIFO but worse than OPT
» Generally good algorithm and frequently used

