Thrashing

e If a process does not have “enough” pages, the page-fault rate
is very high
e Page fault to get page
* Replace existing frame
e But quickly need replaced frame back

e This leads to:

e Low CPU utilization

e Operating system thinking that it needs to increase the degree of
multiprogramming

* Another process added to the system

* Thrashing = a process is busy swapping pages in and out

Thrashing (Cont.)

CPU utilization

degree of multiprogramming

Allocation of frames - Thrashing.

Demand Paging and Thrashing

 Why does demand paging work?
Locality model

* Process migrates from one locality to another
* Localities may overlap

 Why does thrashing occur?
2 size of locality > total memory size
* Limit effects by using local or priority page replacement

Allocation of frames - Thrashing.

Locality In A Memory-Reference Pattern

Ll Ml Ui Ul 4L
34 Hl W‘ 1' 1 T W_' { “ |
IR L T Al W S e e
s | ' ‘ IIIIII

32 f—> \Illl e ;
. I \ IH | ||| 1“ Ul
W“”\ o l | nlI |!'H il I i \ H' m ‘ |
il ’
it
30 - | : I\ Y H' ‘”H ‘‘‘‘‘‘ Tt
| “ | lm |‘|‘M““ I Wwwwm H\HIHHH“}l|\"I\\||”HHIH|HI|HHH|!HH H ’

28 ‘

ek
] \HW\M
It

26 g

L '. I‘\ \
k-'\ “ N\Ww .

24 e [w S
,M“‘ l - I|H |” ‘ il ‘ | ;H!l .

1)
LI

i ‘ ! LI ”Hll ‘ | UL e
i el g ‘“‘N””H i |
2 M (A osna A Wuul \

I
i me;zmwunmmmnlh JH‘ """

memory address

I 141 B 1 R TP L
Vol
8 20 b L ___N.‘.!!!‘IH,,.IIH ““H H e)
5 ’ i <.;HH::"‘HHHim‘iH"lll\l\“'ul'“r‘ml i
g) ‘ U “ ;Immnm I m M
S 1 ,‘1 ‘|”|H|1\""'”!”‘|\UI!'!”“”'N””‘I‘”w "wunrmunmiunumIH i !nHH‘H||U|HHHII‘\”,5?UIH ‘IHIW\”“

execution time ——

Allocation of frames - Thrashing.

Working-Set Model

* A =working-set window = a fixed number of page references
Example: 10,000 instructions

» WSS, (working set of Process P;) =
total number of pages referenced in the most recent A (varies in time)
e if A too small will not encompass entire locality
e if Atoo large will encompass several localities
e if A =00 = will encompass entire program
e D=2 WSS, =total demand frames
e Approximation of locality

e if D>m = Thrashing

e Policy if D >m, then suspend or swap out one of the processes

page reference table

...2615777751623412344434344413234443444...

A 1 A _I
+ b

t t
WS(t,) ={1,2,5,6,7) WS(t,) = (3,4}

Allocation of frames - Thrashing.

Keeping Track of the Working Set

e Approximate with interval timer + a reference bit

e Example: A =10,000
e Timer interrupts after every 5000 time units
» Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and sets the values of all reference bits
to0

* |f one of the bits in memory = 1 = page in working set
e Why is this not completely accurate?
* Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency

* More direct approach than WSS

e Establish “acceptable” page-fault frequency (PFF) rate
and use local replacement policy

e |f actual rate too low, process loses frame
e |f actual rate too high, process gains frame

2 increase number
o of frames
8 upper bound
o
(@)]
®
[oX
lower bound
decrease number
of frames

A\ 4

number of frames

Allocation of frames - Thrashing.

Working Sets and Page Fault Rates

Direct relationship between working set of a process and its page-
fault rate

Working set changes over time

Peaks and valleys over time

working set

page
fault
rate

time

Allocation of frames - Thrashing.

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

* A file is initially read using demand paging
* A page-sized portion of the file is read from the file system into a
physical page
* Subsequent reads/writes to/from the file are treated as ordinary
memory accesses

 Simplifies and speeds file access by driving file I/0 through
memory rather thanread() and wite() system calls

* Also allows several processes to map the same file allowing the
pages in memory to be shared

e But when does written data make it to disk?
* Periodically and / or at file cl ose() time
* For example, when the pager scans for dirty pages

Memory-Mapped File Technigue for all I/O

e Some OSes uses memory mapped files for standard I/O

* Process can explicitly request memory mapping a file via mmap()
system call

* Now file mapped into process address space

e For standard I/O (open(), read(), wite(), close()),
mmap anyway
e But map file into kernel address space

e Process still does read() and write()
* Copies data to and from kernel space and user space
* Uses efficient memory management subsystem
* Avoids needing separate subsystem

* COW can be used for read/write non-shared pages

 Memory mapped files can be used for shared memory (although
again via separate system calls)

Memory Mapped Files

5
6
process B
virtual memory

|1]2]3]4[5]6]

(AN | <
T T T T 1
T S Sy T -
I v . o _____ I
I I oy o _____ ol
T T a | “ !
_ - - I 1
== _ o _j_‘
v vy v VY \A 2 /
>
.
o
e
o)
e
™ © — |0 < || =
I
O
[92]
=
=
o
+ﬁ + +:+ ++:
I T ;
Lo - _|I. | 1 _“
r——L - — -3 -4 | [
I “ SR PR SRR I
I N B e I
I r=—F+pF === == = = = = = !
1 1 1 | I | | WJ
< £
Se
— ||| || © me
O ®
-
S
S E
S

disk file

Allocation of frames - Thrashing.

Shared Memory via Memory-Mapped I/0

Process;

shared
memory

process,
memory-mapped
R file
shared T el
. memory TNeL
T el shared
N memory

Allocation of frames - Thrashing.

Shared Memory in Windows AP]

e First create a file mapping for file to be mapped
* Then establish a view of the mapped file in process’s virtual address
space
e Consider producer / consumer

e Producer create shared-memory object using memory mapping
features

e Open fileviaCreat eFi |l e(), returninga HANDLE

» Create mapping via Cr eat eFi | eMappi ng() creatinga named
shared-memory object

 Create view via MapVi ewOI Fi | e()
e Sample code in Textbook

Allocation of frames - Thrashing.

Allocating Kernel Memory

* Treated differently from user memory

e Often allocated from a free-memory pool
* Kernel requests memory for structures of varying sizes

e Some kernel memory needs to be contiguous
* |.e. for device I/O

Buddy System

* Allocates memory from fixed-size segment consisting of physically-
contiguous pages
* Memory allocated using power-of-2 allocator
* Satisfies requests in units sized as power of 2

* Request rounded up to next highest power of 2

* When smaller allocation needed than is available, current chunk split into
two buddies of next-lower power of 2

e Continue until appropriate sized chunk available

* For example, assume 256KB chunk available, kernel requests 21KB

* Splitinto A _,4 Ag of 128KB each

* One further divided into B, and B of 64KB
e One further into C_ and C; of 32KB each — one used to satisfy request

e Advantage — quickly coalesce unused chunks into larger chunk
* Disadvantage - fragmentation

Allocation of frames - Thrashing.

Buddy System Allocator

physically contiguous pages

256 KB

128 KB 128 KB

64 KB 64 KB
B B
32 KB | |32 KB
CL || Cr

Allocation of frames - Thrashing.

