
Thrashing

• If a process does not have “enough” pages, the page-fault rate
is very high

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

• This leads to:

• Low CPU utilization

• Operating system thinking that it needs to increase the degree of
multiprogramming

• Another process added to the system

• Thrashing ≡ a process is busy swapping pages in and out

Allocation of frames – Thrashing.

Thrashing (Cont.)

Allocation of frames – Thrashing.

Demand Paging and Thrashing

• Why does demand paging work?
Locality model

• Process migrates from one locality to another

• Localities may overlap

• Why does thrashing occur?
Σ size of locality > total memory size

• Limit effects by using local or priority page replacement

Allocation of frames – Thrashing.

Locality In A Memory-Reference Pattern

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

m
em

or
y

ad
dr

es
s

execution time

Allocation of frames – Thrashing.

Working-Set Model

• ∆ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 instructions

• WSS
i
(working set of Process P

i
) =

total number of pages referenced in the most recent ∆ (varies in time)

• if ∆ too small will not encompass entire locality

• if ∆ too large will encompass several localities

• if ∆ = ∞  will encompass entire program

• D = Σ WSS
i
≡ total demand frames

• Approximation of locality

• if D > m Thrashing

• Policy if D > m, then suspend or swap out one of the processes

Allocation of frames – Thrashing.

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example: ∆ = 10,000

• Timer interrupts after every 5000 time units

• Keep in memory 2 bits for each page

• Whenever a timer interrupts copy and sets the values of all reference bits
to 0

• If one of the bits in memory = 1  page in working set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units

Allocation of frames – Thrashing.

Page-Fault Frequency

• More direct approach than WSS

• Establish “acceptable” page-fault frequency (PFF) rate
and use local replacement policy

• If actual rate too low, process loses frame

• If actual rate too high, process gains frame

Allocation of frames – Thrashing.

Working Sets and Page Fault Rates

n Direct relationship between working set of a process and its page-

fault rate

n Working set changes over time

n Peaks and valleys over time

Allocation of frames – Thrashing.

Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

• A file is initially read using demand paging

• A page-sized portion of the file is read from the file system into a
physical page

• Subsequent reads/writes to/from the file are treated as ordinary
memory accesses

• Simplifies and speeds file access by driving file I/O through
memory rather than read() and write() system calls

• Also allows several processes to map the same file allowing the
pages in memory to be shared

• But when does written data make it to disk?

• Periodically and / or at file close() time

• For example, when the pager scans for dirty pages

Allocation of frames – Thrashing.

Memory-Mapped File Technique for all I/O

• Some OSes uses memory mapped files for standard I/O

• Process can explicitly request memory mapping a file via mmap()
system call

• Now file mapped into process address space

• For standard I/O (open(), read(), write(), close()),
mmap anyway

• But map file into kernel address space

• Process still does read() and write()

• Copies data to and from kernel space and user space

• Uses efficient memory management subsystem

• Avoids needing separate subsystem

• COW can be used for read/write non-shared pages

• Memory mapped files can be used for shared memory (although
again via separate system calls)

Allocation of frames – Thrashing.

Memory Mapped Files

Allocation of frames – Thrashing.

Shared Memory via Memory-Mapped I/O

Allocation of frames – Thrashing.

Shared Memory in Windows API

• First create a file mapping for file to be mapped

• Then establish a view of the mapped file in process’s virtual address
space

• Consider producer / consumer

• Producer create shared-memory object using memory mapping
features

• Open file via CreateFile(), returning a HANDLE
• Create mapping via CreateFileMapping() creating a named

shared-memory object

• Create view via MapViewOfFile()

• Sample code in Textbook

Allocation of frames – Thrashing.

Allocating Kernel Memory

• Treated differently from user memory

• Often allocated from a free-memory pool

• Kernel requests memory for structures of varying sizes

• Some kernel memory needs to be contiguous

• I.e. for device I/O

Allocation of frames – Thrashing.

Buddy System

• Allocates memory from fixed-size segment consisting of physically-
contiguous pages

• Memory allocated using power-of-2 allocator

• Satisfies requests in units sized as power of 2

• Request rounded up to next highest power of 2

• When smaller allocation needed than is available, current chunk split into
two buddies of next-lower power of 2

• Continue until appropriate sized chunk available

• For example, assume 256KB chunk available, kernel requests 21KB

• Split into AL and AR of 128KB each

• One further divided into BL and BR of 64KB

• One further into CL and CR of 32KB each – one used to satisfy request

• Advantage – quickly coalesce unused chunks into larger chunk

• Disadvantage - fragmentation

Allocation of frames – Thrashing.

Buddy System Allocator

Allocation of frames – Thrashing.

