
Chapter 12: File System

Implementation

 File System Structure

 File System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

Operating System Concepts

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks).

 File system organized into layers.

 File control block – storage structure consisting of

information about a file.

Operating System Concepts

Layered File System

Operating System Concepts

A Typical File Control Block

Operating System Concepts

In-Memory File System

Structures

 The following figure illustrates the necessary file system

structures provided by the operating systems.

 Figure 12-3(a) refers to opening a file.

 Figure 12-3(b) refers to reading a file.

Operating System Concepts

In-Memory File System

Structures

Operating System Concepts

Virtual File Systems

 Virtual File Systems (VFS) provide an object-oriented

way of implementing file systems.

 VFS allows the same system call interface (the API) to

be used for different types of file systems.

 The API is to the VFS interface, rather than any specific

type of file system.

Operating System Concepts

Schematic View of Virtual

File System

Operating System Concepts

Directory Implementation

 Linear list of file names with pointer to the data blocks.

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure.

 decreases directory search time

 collisions – situations where two file names hash to the

same location

 fixed size

Operating System Concepts

Allocation Methods

 An allocation method refers to how disk blocks are

allocated for files:

 Contiguous allocation

 Linked allocation

 Indexed allocation

Operating System Concepts

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the disk.

 Simple – only starting location (block #) and length (number of
blocks) are required.

 Random access.

 Wasteful of space (dynamic storage-allocation problem).

 Files cannot grow.

Operating System Concepts

Contiguous Allocation of Disk

Space

Operating System Concepts

Extent-Based Systems

 Many newer file systems (I.e. Veritas File System) use a

modified contiguous allocation scheme.

 Extent-based file systems allocate disk blocks in

extents.

 An extent is a contiguous block of disks. Extents are

allocated for file allocation. A file consists of one or

more extents.

Operating System Concepts

Linked Allocation
 Each file is a linked list of disk blocks: blocks may be scattered

anywhere on the disk.

Operating System Concepts

pointerblock =

Linked Allocation (Cont.)

 Simple – need only starting address

 Free-space management system – no waste of space

 No random access

 Mapping

Operating System Concepts

Block to be accessed is the Qth block in the linked chain

of blocks representing the file.

Displacement into block = R + 1

File-allocation table (FAT) – disk-space allocation used by

MS-DOS and OS/2.

LA/511

Q

R

Linked Allocation

Operating System Concepts

File-Allocation Table

Operating System Concepts

Indexed Allocation
 Brings all pointers together into the index block.

 Logical view.

Operating System Concepts

index table

Example of Indexed

Allocation

Operating System Concepts

Indexed Allocation (Cont.)

 Need index table

 Random access

 Dynamic access without external fragmentation, but have

overhead of index block.

 Mapping from logical to physical in a file of maximum size of

256K words and block size of 512 words. We need only 1 block

for index table.

Operating System Concepts

LA/512

Q

R

Q = displacement into index table

R = displacement into block

Indexed Allocation – Mapping

(Cont.)
 Mapping from logical to physical in a file of unbounded length

(block size of 512 words).

 Linked scheme – Link blocks of index table (no limit on size).

Operating System Concepts

LA / (512 x 511)

Q1

R1

Q1 = block of index table

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

Indexed Allocation – Mapping

(Cont.) Two-level index (maximum file size is 5123)

Operating System Concepts

LA / (512 x 512)

Q1

R1

Q1 = displacement into outer-index

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

Indexed Allocation – Mapping

(Cont.)

Operating System Concepts



outer-index

index table file

Combined Scheme: UNIX (4K bytes per block)

Operating System Concepts

Free-Space Management
 Bit vector (n blocks)

Operating System Concepts

…

0 1 2 n-1

bit[i] =



 0  block[i] free

1  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

Free-Space Management

(Cont.)

 Bit map requires extra space. Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

 Easy to get contiguous files

 Linked list (free list)

 Cannot get contiguous space easily

 No waste of space

 Grouping

 Counting

Operating System Concepts

Free-Space Management

(Cont.)
 Need to protect:

 Pointer to free list

 Bit map

 Must be kept on disk

 Copy in memory and disk may differ.

 Cannot allow for block[i] to have a situation where bit[i] = 1 in memory

and bit[i] = 0 on disk.

 Solution:

 Set bit[i] = 1 in disk.

 Allocate block[i]

 Set bit[i] = 1 in memory

Operating System Concepts

Linked Free Space List on

Disk

Operating System Concepts

Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for

frequently used blocks

 free-behind and read-ahead – techniques to optimize

sequential access

 improve PC performance by dedicating section of memory

as virtual disk, or RAM disk.

Operating System Concepts

Various Disk-Caching

Locations

Operating System Concepts

Page Cache

 A page cache caches pages rather than disk blocks using

virtual memory techniques.

 Memory-mapped I/O uses a page cache.

 Routine I/O through the file system uses the buffer

(disk) cache.

 This leads to the following figure.

Operating System Concepts

I/O Without a Unified Buffer

Cache

Operating System Concepts

Unified Buffer Cache

 A unified buffer cache uses the same page cache to

cache both memory-mapped pages and ordinary file

system I/O.

Operating System Concepts

I/O Using a Unified Buffer

Cache

Operating System Concepts

Recovery

 Consistency checking – compares data in directory

structure with data blocks on disk, and tries to fix

inconsistencies.

 Use system programs to back up data from disk to

another storage device (floppy disk, magnetic tape).

 Recover lost file or disk by restoring data from backup.

Operating System Concepts

Log Structured File Systems

 Log structured (or journaling) file systems record each
update to the file system as a transaction.

 All transactions are written to a log. A transaction is
considered committed once it is written to the log.
However, the file system may not yet be updated.

 The transactions in the log are asynchronously written
to the file system. When the file system is modified, the
transaction is removed from the log.

 If the file system crashes, all remaining transactions in
the log must still be performed.

Operating System Concepts

The Sun Network File System

(NFS)

 An implementation and a specification of a software

system for accessing remote files across LANs (or WANs).

 The implementation is part of the Solaris and SunOS

operating systems running on Sun workstations using an

unreliable datagram protocol (UDP/IP protocol and

Ethernet.

Operating System Concepts

NFS (Cont.)

 Interconnected workstations viewed as a set of
independent machines with independent file systems,
which allows sharing among these file systems in a
transparent manner.

 A remote directory is mounted over a local file system
directory. The mounted directory looks like an integral
subtree of the local file system, replacing the subtree
descending from the local directory.

 Specification of the remote directory for the mount
operation is nontransparent; the host name of the remote
directory has to be provided. Files in the remote directory
can then be accessed in a transparent manner.

 Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory.

Operating System Concepts

NFS (Cont.)

 NFS is designed to operate in a heterogeneous

environment of different machines, operating systems,

and network architectures; the NFS specifications

independent of these media.

 This independence is achieved through the use of RPC

primitives built on top of an External Data

Representation (XDR) protocol used between two

implementation-independent interfaces.

 The NFS specification distinguishes between the

services provided by a mount mechanism and the actual

remote-file-access services.

Operating System Concepts

Three Independent File

Systems

Operating System Concepts

Mounting in NFS

Operating System Concepts

Mounts Cascading mounts

NFS Mount Protocol
 Establishes initial logical connection between server and

client.

 Mount operation includes name of remote directory to be
mounted and name of server machine storing it.

 Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine.

 Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them.

 Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses.

 File handle – a file-system identifier, and an inode number to
identify the mounted directory within the exported file
system.

 The mount operation changes only the user’s view and does
not affect the server side.

Operating System Concepts

NFS Protocol

 Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

 searching for a file within a directory

 reading a set of directory entries

 manipulating links and directories

 accessing file attributes

 reading and writing files

 NFS servers are stateless; each request has to provide a full set of
arguments.

 Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching).

 The NFS protocol does not provide concurrency-control
mechanisms.

Operating System Concepts

Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read,

write, and close calls, and file descriptors).

 Virtual File System (VFS) layer – distinguishes local files

from remote ones, and local files are further

distinguished according to their file-system types.

 The VFS activates file-system-specific operations to handle

local requests according to their file-system types.

 Calls the NFS protocol procedures for remote requests.

 NFS service layer – bottom layer of the architecture;

implements the NFS protocol.

Operating System Concepts

Schematic View of NFS

Architecture

Operating System Concepts

NFS Path-Name Translation

 Performed by breaking the path into component names

and performing a separate NFS lookup call for every pair

of component name and directory vnode.

 To make lookup faster, a directory name lookup cache

on the client’s side holds the vnodes for remote

directory names.

Operating System Concepts

NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX
system calls and the NFS protocol RPCs (except opening
and closing files).

 NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of
performance.

 File-blocks cache – when a file is opened, the kernel checks
with the remote server whether to fetch or revalidate the
cached attributes. Cached file blocks are used only if the
corresponding cached attributes are up to date.

 File-attribute cache – the attribute cache is updated
whenever new attributes arrive from the server.

 Clients do not free delayed-write blocks until the server
confirms that the data have been written to disk.

Operating System Concepts

