FREE-SPACE MANAGEMENT

• Bit vector (*n* blocks)

bit[*i*] =
$$\begin{cases} 0 \Rightarrow block[i] free \\ 1 \Rightarrow block[i] occupied \end{cases}$$

Block number calculation

(number of bits per word) * (number of 0-value words) + offset of first 1 bit

Free-Space Management

Free-Space Management (Cont.)

• Bit map requires extra space. Example:

block size = 2^{12} bytes disk size = 2^{30} bytes (1 gigabyte) $n = 2^{30}/2^{12} = 2^{18}$ bits (or 32K bytes)

- Easy to get contiguous files
- Linked list (free list)
 - Cannot get contiguous space easily
 - No waste of space
- Grouping
- Counting

Free-Space Management (Cont.)

- Need to protect:
 - Pointer to free list
 - Bit map
 - Must be kept on disk
 - Copy in memory and disk may differ.
 - Cannot allow for block[i] to have a situation where bit[i] = 1 in memory and bit[i] = 0 on disk.
 - Solution:
 - Set bit[*i*] = 1 in disk.
 - Allocate block[*i*]
 - Set bit[*i*] = 1 in memory

Efficiency and Performance

- Efficiency dependent on:
 - disk allocation and directory algorithms
 - types of data kept in file's directory entry

• Performance

- disk cache separate section of main memory for frequently used blocks
- free-behind and read-ahead techniques to optimize sequential access
- improve PC performance by dedicating section of memory as virtual disk, or RAM disk.

Various Disk-Caching Locations

Page Cache

- A **page cache** caches pages rather than disk blocks using virtual memory techniques.
- Memory-mapped I/O uses a page cache.
- Routine I/O through the file system uses the buffer (disk) cache.
- This leads to the following figure.

I/O Without a Unified Buffer Cache

Free-Space Management

Unified Buffer Cache

• A unified buffer cache uses the same page cache to cache both memory-mapped pages and ordinary file system I/O.

I/O Using a Unified Buffer Cache

Free-Space Management

Recovery

- Consistency checking compares data in directory structure with data blocks on disk, and tries to fix inconsistencies.
- Use system programs to *back up* data from disk to another storage device (floppy disk, magnetic tape).
- Recover lost file or disk by *restoring* data from backup.