

SNS COLLEGE OF TECHNOLOGY

Coimbatore – 35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC

- UGC with 'A++' Grade

Approved by AICTE, New Delhi & Affiliated to Anna

University, Chennai

Linear Discriminant Analysis (LDA)

Introduction

Linear Discriminant Analysis (LDA) is used to solve dimensionality reduction for data with higher attributes

- Pre-processing step for pattern-classification and machine learning applications.
- Used for feature extraction.
- Linear transformation that maximize the separation between multiple classes.
- "Supervised" Prediction agent

Feature Subspace:

To reduce the dimensions of a d-dimensional data set by projecting it onto a (k)-dimensional subspace (where k < d)

Feature space data is well represented?

- Compute eigen vectors from dataset
- Collect them in scatter matrix
- Generate *k*-dimensional data from d-dimensional dataset.

Scatter Matrix:

- Within class scatter matrix
- In between class scatter matrix

$$S_W = \sum_{i=1}^c S_i$$

$$S_B = \sum_{i=1}^c N_i (oldsymbol{m}_i - oldsymbol{m}) (oldsymbol{m}_i - oldsymbol{m})^T$$

Maximize the between class measure & minimize the within class measure.

Linear Discriminant Analysis /Rajarajeswari.S/AP/AIML/SNSCT

Linear Discriminant Analysis /Rajarajeswari.S/AP/AIML/SNSCT

Linear Discriminant Analysis /Rajarajeswari.S/AP/AIML/SNSCT

LDA steps:

- 1. Compute the d-dimensional mean vectors.
- 2. Compute the scatter matrices
- 3. Compute the eigenvectors and corresponding eigenvalues for the scatter matrices.
- 4. Sort the eigenvalues and choose those with the largest eigenvalues to form a dxk dimensional matrix
- 5. Transform the samples onto the new subspace.

Dataset

Attributes:

- X
- O
- Blank

Class:

- Positive(Win for X)
- Negative(Win for O)

Dataset

top-left- square	top- middle- square	top- right- square	middle- left- square	middle- middle- square		bottom- left- square	bottom- middle- square		Class
x	X	x	X	0	0	x	0	0	positive
X	Х	X	Х	0	0	0	Х	0	positive
X	X	X	X	0	0	0	0	X	positive
0	Х	Х	b	0	Х	Х	0	0	negative
0	X	X	b	0	X	0	Х	0	negative
o	x	x	b	О	x	b	b	О	negative

Linear Discriminant Analysis /Rajarajeswari.S/AP/AIML/SNSCT

References:

- [1]https://en.wikipedia.org/wiki/Principal_component_analysis#
- [2]http://sebastianraschka.com/Articles/2015_pca_in_3_steps.html#a-summary-of-the-pca-approach
- [3]http://cs.fit.edu/~dmitra/ArtInt/ProjectPapers/PcaTutorial.pdf
- [4] Sebastian Raschka, Linear Discriminant Analysis Bit by Bit, http://sebastianraschka.com/Articles/414_python_lda.html, 414.
- [5] Zhihua Qiao, Lan Zhou and Jianhua Z. Huang, Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data
- [6] Tic Tac Toe Dataset https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame