SNS COLLEGE OF TECHNOLOGY
 Coimbatore - 35
 An Autonomous Institution
 WSTITVIGIS:
 Accredited by NBA - AICTE and Accredited
 by NAAC - UGC with 'A++' Grade
 Approved by AICTE, New Delhi \& Affiliated
 to Anna University, Chennai

Principal Components Analysis (PCA)

Principal Components Analysis (PCA)

- An exploratory technique used to reduce the dimensionality of the data set to 2D or 3D
- Can be used to:
- Reduce number of dimensions in data
- Find patterns in high-dimensional data
- Visualize data of high dimensionality
- Example applications:
- Face recognition
- Image compression
- Gene expression analysis

Principal Components Analysis Ideas (

 PCA)- Does the data set 'span' the whole of d dimensional space?
- For a matrix of m samples $\mathrm{x} n$ genes, create a new covariance matrix of size $n \times n$.
- Transform some large number of variables into a smaller number of uncorrelated variables called principal components (PCs).
- developed to capture as much of the variation in data as possible

Principal Component Analysis

See online tutorials such as
http://www.cs.otago.ac.nz/cosc453/student_ tutorials/principa Xemponents.pdf

Note: Y 1 is the first eigen vector, Y 2 is the second. Y2 ignorable.

,

Principal Component Analysis: one

 attribute first- Question: how much spread is in the data along the axis? (distance to the mean)
- Variance=Standard deviation^2

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{(n-1)}
$$

Temperature
42
40
24
30
15
18
15
30
15
30
35
30
40
30

Now consider two dimensions

Covariance: measures the correlation between X and Y

- $\operatorname{cov}(X, Y)=0$: independent - $\operatorname{Cov}(X, Y)>0$: move same dir - $\operatorname{Cov}(X, Y)<0$: move oppo dir
$\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{(n-1)}$

X=Temperature	Y=Humidity
40	90
40	90
40	90
30	90
15	70
15	70
15	70
30	90
15	70
30	70
30	70
30	90
40	70
30	690

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

More than two attributes: covariance sic matrix

- Contains covariance values between all possible dimensions (=attributes):

$$
C^{n \times n}=\left(c_{i j} \mid c_{i j}=\operatorname{cov}\left(\operatorname{Dim}_{i}, \operatorname{Dim}_{j}\right)\right)
$$

- Example for three attributes $(\mathrm{x}, \mathrm{y}, \mathrm{z})$:

$$
C=\left(\begin{array}{ccc}
\operatorname{cov}(x, x) & \operatorname{cov}(x, y) & \operatorname{cov}(x, z) \\
\operatorname{cov}(y, x) & \operatorname{cov}(y, y) & \operatorname{cov}(y, z) \\
\operatorname{cov}(z, x) & \operatorname{cov}(z, y) & \operatorname{cov}(z, z)
\end{array}\right)
$$

Eigenvalues \& eigenvectors

- Vectors \mathbf{x} having same direction as $A \mathbf{x}$ are called eigenvectors of A (A is an n by n matrix).
- In the equation $A \mathbf{x}=\lambda \mathbf{x}, \lambda$ is called an eigenvalue of A.

$$
\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) x\binom{3}{2}=\binom{12}{8}=4 x\binom{3}{2}
$$

Eigenvalues \& eigenvectors

- $A \mathbf{x}=\lambda \mathbf{x} \Leftrightarrow(A-\lambda \mathrm{I}) \mathbf{x}=0$
- How to calculate \mathbf{x} and λ :
- Calculate $\operatorname{det}(A-\lambda I)$, yields a polynomial (degree n)
- Determine roots to $\operatorname{det}(A-\lambda I)=0$, roots are eigenvalues λ
- Solve $(A-\lambda I) \mathbf{x}=0$ for each λ to obtain eigenvectors \mathbf{x}

Principal components

- 1. principal component (PC1)
- The eigenvalue with the largest absolute value will indicate that the data have the largest variance along its eigenvector, the direction along which there is greatest variation
- 2. principal component (PC2)
- the direction with maximum variation left in data, orthogonal to the 1. PC
- In general, only few directions manage to capture most of the variability in the data.

Steps of PCA

- Let \bar{X} be the mean vector (taking the mean of all rows)
- Adjust the original data by the mean

$$
\mathrm{X}^{\prime}=\mathrm{X}-\bar{X}
$$

- Compute the covariance matrix C of adjusted X
- Find the eigenvectors and eigenvalues of C .
- For matrix C, vectors \mathbf{e} (=column vector) having same direction as $C \mathbf{e}$:
- eigenvectors of C is e such that $C \mathbf{e}=\lambda \mathbf{e}$,
- λ is called an eigenvalue of C.
- $C \mathbf{e}=\lambda \mathbf{e} \Leftrightarrow(C-\lambda \mathrm{I}) \mathbf{e}=0$
- Most data mining packages do this for you.

Eigenvalues

- Calculate eigenvalues λ and eigenvectors \mathbf{x} for covariance matrix:
- Eigenvalues λ_{j} are used for calculation of [\% of total variance] $\left(V_{j}\right)$ for each component j :

$$
V_{j}=100 \cdot \frac{\lambda_{j}}{\sum_{x=1}^{n} \lambda_{x}} \quad \sum_{x=1}^{n} \lambda_{x}=n
$$

Principal components - Variance

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

Transformed Data

- Eigenvalues λ_{j} corresponds to variance on each component j
- Thus, sort by λ_{j}
- Take the first p eigenvectors $\mathbf{e}_{\mathbf{i}}$, where p is the number of top eigenvalues
- These are the directions with the largest variances

$$
\left(\begin{array}{c}
y_{i 1} \\
y_{i 2} \\
\ldots \\
y_{i p}
\end{array}\right)=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\cdots \\
e_{p}
\end{array}\right)\left(\begin{array}{c}
x_{i 1}-\overline{x_{1}} \\
x_{i 2}-\overline{x_{2}} \\
\cdots \\
x_{i n}-\overline{x_{n}}
\end{array}\right)
$$

An Example Mean1=24.1 Mean2=53.8

Covariance Matrix

- $\mathrm{C}=$| 75 | 106 |
| ---: | ---: |
| 106 | 482 |
- Using MATLAB, we find out:
- Eigenvectors:
$-\mathrm{e} 1=(-0.98,-0.21), \lambda 1=51.8$
- e2=(0.21,-0.98), $\lambda 2=560.2$
- Thus the second eigenvector is more important!

If we only keep one dimension: e2

- We keep the dimension of e2=(0.21,-0.98)
- We can obtain the final data as

yi
-10.14
-16.72
-31.35
31.374
16.464
8.624
19.404
-17.63

$$
y_{i}=\left(\begin{array}{ll}
0.21 & -0.98
\end{array}\right)\binom{x_{i 1}}{x_{i 2}}=0.21 * x_{i 1}-0.98 * x_{i 2}
$$

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

Mean adusted data with eigenvectors cwerlayed

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

PCA -> Original Data

- Retrieving old data (e.g. in data compression)
- RetrievedRowData=(RowFeatureVector ${ }^{\mathrm{T}} \mathrm{x}$ FinalData)+OriginalMean
- Yields original data using the chosen components

Principal components

- General about principal components
- summary variables
- linear combinations of the original variables
- uncorrelated with each other
- capture as much of the original variance as possible

Applications - Gene expression analysi Sic

- Reference: Raychaudhuri et al. (2000)
- Purpose: Determine core set of conditions for useful gene comparison
- Dimensions: conditions, observations: genes
- Yeast sporulation dataset (7 conditions, 6118 genes)
- Result: Two components capture most of variability (90\%)
- Issues: uneven data intervals, data dependencies
- PCA is common prior to clustering
- Crisp clustering questioned : genes may correlate with multiple clusters
- Alternative: determination of gene's closest neighbours

Two Way (Angle) Data Analysis

 Genes $10^{3}-10^{4}$ Conditions $10^{1}-10^{2}$
zOL-ıOL Sədues

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

PCA - example

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

PCA on all Genes

Leukemia data, precursor B and T

Plot of 34 patients, dimension of 8973 genes reduced to 2

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

PCA on 100 top significant genes Leukemia data, precursor B and T

Plot of 34 patients, dimension of 100 genes reduced to 2

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

PCA of genes (Leukemia data)

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

