

SNS COLLEGE OF TECHNOLOGY

Coimbatore – 35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Principal Components Analysis (PCA)

Principal Components Analysis (PCA)

- An exploratory technique used to reduce the dimensionality of the data set to 2D or 3D
- Can be used to:
 - Reduce number of dimensions in data
 - Find patterns in high-dimensional data
 - Visualize data of high dimensionality
- Example applications:
 - Face recognition
 - Image compression
 - Gene expression analysis

Principal Components Analysis Ideas (PCA)

- Does the data set 'span' the whole of d dimensional space?
- For a matrix of *m* samples x *n* genes, create a new covariance matrix of size *n* x *n*.
- Transform some large number of variables into a smaller number of uncorrelated variables called principal components (PCs).
- developed to capture as much of the variation in data as possible

Note: Y1 is

the first

Y2 is the

ignorable.

Principal Component Analysis

See online tutorials such as

Principal Component Analysis: one

attribute first

- Question: how much spread is in the data along the axis? (distance to the mean)

Temperature	
	42
	40
	24
	30
	15
	18
	15
	30
	15
	30
	35
	30
	40
	30
	

Now consider two dimensions

Covariance: measures the correlation between X and Y

• cov(X,Y)=0: independent

•Cov(X,Y)>0: move same dir

•Cov(X,Y)<0: move oppo dir

$cov(X,Y) = \frac{1}{2}$	$\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$
COV(X, I) =	(n-1)

X=Temperature	Y=Humidity
40	90
40	90
40	90
30	90
15	70
15	70
15	70
30	90
15	70
30	70
30	70
30	90
40	70
30	6 90

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

More than two attributes: covariance matrix

 Contains covariance values between all possible dimensions (=attributes):

$$C^{nxn} = (c_{ij} \mid c_{ij} = \text{cov}(Dim_i, Dim_j))$$

• Example for three attributes (x,y,z):

$$C = \begin{pmatrix} \cos(x, x) & \cos(x, y) & \cos(x, z) \\ \cos(y, x) & \cos(y, y) & \cos(y, z) \\ \cos(z, x) & \cos(z, y) & \cos(z, z) \end{pmatrix}$$

Eigenvalues & eigenvectors

- Vectors \mathbf{x} having same direction as $A\mathbf{x}$ are called eigenvectors of A (A is an n by n matrix).
- In the equation $A\mathbf{x}=\lambda\mathbf{x}$, λ is called an *eigenvalue* of A.

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} x \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4x \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Eigenvalues & eigenvectors

- $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda \mathbf{I})\mathbf{x} = 0$
- How to calculate **x** and λ :
 - Calculate $det(A-\lambda I)$, yields a polynomial (degree n)
 - Determine roots to $det(A-\lambda I)=0$, roots are eigenvalues λ
 - Solve $(A \lambda I)$ **x**=0 for each λ to obtain eigenvectors **x**

- 1. principal component (PC1)
 - The eigenvalue with the largest absolute value will indicate that the data have the largest variance along its eigenvector, the direction along which there is greatest variation
- 2. principal component (PC2)
 - the direction with maximum variation left in data,
 orthogonal to the 1. PC
- In general, only few directions manage to capture most of the variability in the data.

Steps of PCA

- Let \overline{X} be the mean vector (taking the mean of all rows)
- Adjust the original data by the mean $X' = X - \overline{X}$
- Compute the covariance matrix C of adjusted X
- Find the eigenvectors and eigenvalues of C.

- For matrix *C*, vectors **e** (=column vector) having same direction as *C***e**:
 - *eigenvectors* of *C* is **e** such that $C\mathbf{e}=\lambda\mathbf{e}$,
 - λ is called an *eigenvalue* of C.
- $Ce = \lambda e \Leftrightarrow (C \lambda I)e = 0$
 - Most data mining packages do this for you.

Eigenvalues

- Calculate eigenvalues λ and eigenvectors \mathbf{x} for covariance matrix:
 - Eigenvalues λ_j are used for calculation of [% of total variance] (V_i) for each component j:

$$V_{j} = 100 \cdot \frac{\lambda_{j}}{\sum_{1}^{n} \lambda_{x}} \qquad \sum_{x=1}^{n} \lambda_{x} = n$$

Principal components - Variance

Transformed Data

- Eigenvalues λ_j corresponds to variance on each component j
- Thus, sort by λ_i
- Take the first p eigenvectors $\mathbf{e_{i}}$; where \mathbf{p} is the number of top eigenvalues
- These are the directions with the largest variances

$$\begin{pmatrix} y_{i1} \\ y_{i2} \\ \dots \\ y_{ip} \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_p \end{pmatrix} \begin{pmatrix} x_{i1} - \overline{x_1} \\ x_{i2} - \overline{x_2} \\ \dots \\ x_{in} - \overline{x_n} \end{pmatrix}$$

An Example Mean1=24.1 Mean2=53.8

X1	X2	X1'	X2'	100 90 80 70
19	63	-5.1	9.25	60 50 40 30
39	74	14.9	20.25	20 10 0 10 20 30 40
30	87	5.9	33.25	40
30	23	5.9	-30.75	30 * * * * * * * * * * * * * * * * * * *
15	35	-9.1	-18.75	-15 -10 -5 ₋₁₀ 0 5 10 15
15	43	-9.1	-10.75	-30 -40
15	32	-9.1	-21.75	
20	Principal C	omponents A	nalysis /R	ajarajeswari.S/AP/AIML/SNSCT

Covariance Matrix

• Using MATLAB, we find out:

- Eigenvectors:
- $e1 = (-0.98, -0.21), \lambda 1 = 51.8$
- $e2 = (0.21, -0.98), \lambda 2 = 560.2$
- Thus the second eigenvector is more important!

If we only keep one dimension: e2

- We keep the dimension of e2=(0.21,-0.98)
- We can obtain the final data as

yi
-10.14
-16.72
-31.35
31.374
16.464
8.624
19.404
-17.63

$$y_i = (0.21 - 0.98) \binom{x_{i1}}{x_{i2}} = 0.21 * x_{i1} - 0.98 * x_{i2}$$

Mean adjusted data with eigenvectors overlayed

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

PCA -> Original Data

- Retrieving old data (e.g. in data compression)
 - RetrievedRowData=(RowFeatureVector^T x FinalData)+OriginalMean
 - Yields original data using the chosen components

Principal components

- General about principal components
 - summary variables
 - linear combinations of the original variables
 - uncorrelated with each other
 - capture as much of the original variance as possible

**Applications – Gene expression analysi

- Reference: Raychaudhuri et al. (2000)
- **Purpose:** Determine core set of conditions for useful gene comparison
- Dimensions: conditions, observations: genes
- Yeast sporulation dataset (7 conditions, 6118 genes)
- **Result:** Two components capture most of variability (90%)
- Issues: uneven data intervals, data dependencies
- PCA is common prior to clustering
- Crisp clustering questioned : genes may correlate with multiple clusters
- Alternative: determination of gene's closest neighbours

SIS WEITHURIOUS

Two Way (Angle) Data Analysis

Genes 10³–10⁴

Conditions 10¹–10²

PCA - example

PCA on all Genes

Leukemia data, precursor B and T

Plot of 34 patients, dimension of 8973 genes

reduced to 2

PCA on 100 top significant genes Leukemia data, precursor B and T

Plot of 34 patients, dimension of 100 genes

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT

PCA of genes (Leukemia data)

Plot of 8973 genes, dimension of 34 patients reduced to 2

