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Principal Components Analysis ( PCA)

• An exploratory technique used to reduce the 
dimensionality of the data set to 2D or 3D

• Can be used to:

– Reduce number of dimensions in data

– Find patterns in high-dimensional data

– Visualize data of high dimensionality

• Example applications:

– Face recognition

– Image compression

– Gene expression analysis
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Principal Components Analysis Ideas ( 

PCA)

• Does the data set ‘span’ the whole of d 
dimensional space?

• For a matrix of m samples x n genes, create a new 
covariance matrix of size n x n.

• Transform some large number of variables into a 
smaller number of uncorrelated variables called 
principal components (PCs).

• developed to capture as much of the variation in 
data as possible
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X1

X2

Principal Component Analysis
See online tutorials such as 
http://www.cs.otago.ac.nz/cosc453/student_
tutorials/principal_components.pdf

Note: Y1 is 
the first 
eigen vector, 
Y2 is the 
second.  Y2 
ignorable.
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Key observation:
variance = largest!
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Principal Component Analysis: one 

attribute first

• Question: how much 

spread is in the data 

along the axis? 

(distance to the mean)

• Variance=Standard 

deviation^2
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Now consider two dimensions
X=Temperature Y=Humidity
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Covariance: measures the
correlation between X and Y
• cov(X,Y)=0: independent
•Cov(X,Y)>0: move same dir
•Cov(X,Y)<0: move oppo dir
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More than two attributes: covariance 

matrix

• Contains covariance values between all 

possible dimensions (=attributes):

• Example for three attributes (x,y,z):
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Eigenvalues & eigenvectors

• Vectors x having same direction as Ax are  called 

eigenvectors of A (A is an n by n matrix).

• In the equation Ax=x,  is called an eigenvalue of A.
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Eigenvalues & eigenvectors

• Ax=x  (A-I)x=0

• How to calculate x and :

– Calculate det(A-I), yields a polynomial 

(degree n)

– Determine roots to det(A-I)=0, roots are 

eigenvalues 

– Solve (A- I) x=0 for each  to obtain 

eigenvectors x
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Principal components

• 1. principal component (PC1)

– The eigenvalue with the largest absolute value will 

indicate that the data have the largest variance 

along its eigenvector, the direction along which 

there is greatest variation

• 2. principal component (PC2)

– the direction with maximum variation left in data,  

orthogonal to the 1. PC 

• In general, only few directions manage to 

capture most of the variability in the data.
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Steps of PCA

• Let      be the mean 

vector (taking the mean 

of all rows)

• Adjust the original data 

by the mean

X’ = X –

• Compute the 

covariance matrix C of 

adjusted X

• Find the eigenvectors 

and eigenvalues of C.

X

• For matrix C, vectors e

(=column vector) having 

same direction as Ce :

– eigenvectors of C is  e such 

that Ce=e, 

–  is called an eigenvalue of 

C.

• Ce=e  (C-I)e=0

– Most data mining 

packages do this for you.

X

Principal Components Analysis /Rajarajeswari.S/AP/AIML/SNSCT



12

Eigenvalues

• Calculate eigenvalues  and eigenvectors x for 

covariance matrix:

– Eigenvalues j are used for calculation of [% of total 

variance] (Vj) for each component j: 
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Principal components - Variance
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Transformed Data

• Eigenvalues j corresponds to variance on each 

component j

• Thus, sort by j

• Take the first p eigenvectors ei;  where p is the number of 

top eigenvalues

• These are the directions with the largest variances
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An Example

X1 X2 X1' X2'

19 63 -5.1 9.25

39 74 14.9 20.25

30 87 5.9 33.25

30 23 5.9 -30.75

15 35 -9.1 -18.75

15 43 -9.1 -10.75

15 32 -9.1 -21.75

30 73 5.9 19.25
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Covariance Matrix

• C=

• Using MATLAB, we find out:

– Eigenvectors: 

– e1=(-0.98,-0.21), 1=51.8

– e2=(0.21,-0.98),  2=560.2

– Thus the second eigenvector is more important!

75 106

106 482
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If we only keep one dimension: e2

• We keep the dimension 

of e2=(0.21,-0.98)

• We can obtain the final 

data as
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PCA –> Original Data

• Retrieving old data (e.g. in data compression)

– RetrievedRowData=(RowFeatureVectorT x 

FinalData)+OriginalMean

– Yields original data using the chosen components
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Principal components

• General about principal components

– summary variables

– linear combinations of the original variables

– uncorrelated with each other

– capture as much of the original variance as 

possible
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Applications – Gene expression analysis

• Reference: Raychaudhuri et al. (2000)

• Purpose: Determine core set of conditions for useful

gene comparison

• Dimensions: conditions, observations: genes

• Yeast sporulation dataset (7 conditions, 6118 genes)

• Result: Two components capture most of variability 
(90%)

• Issues: uneven data intervals, data dependencies

• PCA is common prior to clustering

• Crisp clustering questioned : genes may correlate with 
multiple clusters

• Alternative: determination of gene’s closest neighbours
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Two Way (Angle) Data Analysis
Genes 103–104
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PCA - example
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PCA on all Genes
Leukemia data, precursor B and T

Plot of 34 patients, dimension of 8973 genes 

reduced to 2
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PCA on 100 top significant genes 

Leukemia data, precursor B and T

Plot of 34 patients, dimension of 100 genes 

reduced to 2
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PCA of genes (Leukemia data)
Plot of 8973 genes, dimension of 34 patients reduced to 2
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