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Gaussian Mixture Models

Rather than identifying clusters by “nearest”
centroids

Fit a Set of k Gaussians to the data
Maximum Likelihood over a mixture model
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GMM example
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Mixture Models

* Formally a Mixture Model is the weighted sum
of a number of pdfs where the weights are
determined by a distribution,

p(x) = mofo(z) + mfi(z) + mofo(z) + ... + m fie(2)

where Zr =1

1=()

k
- Z i fi(z)

Gaussian Mixture Models and Expectation Maximization /Rajarajeswari.S/AP/AIML/SNSCT



Gaussian Mixture Models

GMM: the weighted sum of a number of
Gaussians where the weights are determined
by a distribution, 7

plx) = ﬂ();\:(‘l'li‘l(). Yo) +mN(z|py, 2y) + ... + 7 N(x| g, i)

where E m =1

1=()

k
p(x) = Z milN (x| pr, Xk)

1=()
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Graphical Models
with unobserved variables

* What if you have variables in a Graphical
model that are never observed?
— Latent Variables

* Training latent variable models is an
unsupervised learning application

(  uncomfortable amused
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sweating laughing
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Latent Variable HMMs

* We can cluster sequences using an HMM with
unobserved state variables
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* We will train latent variable models using
Expectation Maximization
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Expectation Maximization

* Both the training of GMMs and Graphical
Models with latent variables can be
accomplished using Expectation Maximization
— Step 1: Expectation (E-step)

* Evaluate the “responsibilities” of each cluster with the
current parameters

— Step 2: Maximization (M-step)

* Re-estimate parameters using the existing
“responsibilities”

* Similar to k-means training.
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Latent Variable Representation

* We can represent a GMM involving a latent

variable
k
p(z) = Z”zN(ﬂ/l‘k, Yk) = Zp(z)p(:1r|z)
1=0 >
K K
p(z) = H T plz|z) = H N(x|pg, Xi)*
k= k=1

* What does this give us?

TODO: plate notation
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GMM data and Latent variables
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One last bit

We have representations of the joint p(x,z) and
the marginal, p(x)...

The conditional of p(z|x) can be derived using
Bayes rule.

— The responsibility that a mixture component takes for
explaining an observation x.

T(z)=plz = 1llxz) = =
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Maxumum Likelihood over a GMM

* As usual: Identify a likelihood function

Inp(x|m, 1, Zln{zu\ (25| pik,s ._,;‘)}

n=1 k=1

* And set partials to zero...
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Maximum Likelihood of a GMM

E: : ‘x 2 ~ o
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* Optimization of means.

Inp(z|r, u, X) = Z]“{Z“‘/\ (Zn|ptrs i) }

n=1 1

dlnp(z|m, p, X) Z TN (Tn | pg, L)

= E Tr — pr) =0
Dty o 12 milN(zn|p;, 25 F (@ — )

I
i [1]=
N
0
=
,E

L — ,lk) f— 0

N
Zn:l T(:nk)-rn

Kk = N
Zn:l T(‘:Hk)
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Maximum Likelihood of a GMM

* Optimization of covariance

Inp(z|r, p, X) Zl”{Z“‘\ :,,|/1k.23k)}

n=1 l

Y = T(znk) @k — pie) (@k — i)’

Mz

Zn l "”l" n=1

* Note the similarity to the regular MLE without
responsibility terms.
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Maximum Likelihood of a GMM
* Optimization of mixing term

K
Inp(z|m, 1, X) + A (Z Th — 1)

k=1

N(z,, Y
Z Tk |k A) +)‘
= 25 TN (@nluy,

Zr?:l T(2nk)
N

p—

e =—
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MLE of a GMM
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N
Nj = Z T(2nk)

n=I1
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EM for GMMs

Initialize the parameters
— Evaluate the log likelihood

Expectation-step: Evaluate the responsibilities

* Maximization-step: Re-estimate Parameters
— Evaluate the log likelihood
— Check for convergence
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EM for GMMs

* E-step: Evaluate the Responsibilities

g = T N (Tp [ teg, 2i)
“nk = 74
¥ i1 Tl (|5, 25)
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EM for GMMs

M-Step: Re-estimate Parameters

N
pnmv - Zn:] T(an)-rn

A a .‘N'k
i e
new  __ 2 = new\ (.. new\T
2 = :\Tk E T(2nk ) (@k — pi™") (@K — pic™™)
" n=1
7_rn(-u i "Vk
k N
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Visual example of EM
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CLErrrunions

Potential Problems

* Incorrect number of Mixture Components

* Singularities
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Incorrect Number of Gaussians

TUTIONS

Gaussian Mixture Models and Expectation Maximization /Rajarajeswari.S/AP/AIML/SNSCT



b

>

Incorrect Number of Gaussians
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Singularities

* A minority of the data can have a

disproportionate effect on the model
likelihood.

* For example...
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GMM example
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Singularities

* When a mixture component collapses on a
given point, the mean becomes the point, and
the variance goes to zero.

Consider the likelihood function as the

covariance goes to zero.
L 1

N(Zn|Zn, 0°]) = —=—

V2r 0;
The likelihood approaches infinity.

Zﬂ' N (x|pr, Xk)

1=()
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Relationship to K-means

* K-means makes hard decisions.
— Each data point gets assigned to a single cluster.

* GMM/EM makes soft decisions.
— Each data point can yield a posterior p(z|x)

* Soft K-means is a special case of EM.
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Soft means as GMM/EM

* Assume equal covariance matrices for every
mixture component: o

* Likelihood: i 1 i
plx|pk, Xi) = e e-‘\'I”{—EHJ' - /1k||'}
* Responsibilities:
o) = kDl = pulP/2)
> mjexp{—|lzn — p;?/2¢}

* As epsilon approaches zero, the responsibility
approaches unity.
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Soft K-Means as GMM/EM

* Overall Log likelihood as epsilon approaches
zero:

N K
(7 " 1 R
E,Inp(X,Z|p,Z,7)] — — 5 E E FakllTn — || + const.

n=1 k=1

* The expectation of soft k-means is the
intercluster variability

Note: only the means are reestimated in Soft
K-means.

— The covariance matrices are all tied.
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General form of EM

Given a joint distribution over observed and
latent variables: ,(x, z/9)

Want to maximize: ,(x|6)

. Initialize parameters go!d
. E Step: Evaluate:

[)(Z ‘x" (}()ld)

. M-Step: Re-estimate parameters (based on expectation of

complete-data log likelihood
9"" = argmax, ¥ p(Z|X, 0 Inp(X, Z|0)

Check for convergence of pa%ams or likelihood
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Next Time

* Homework 4 due...

Proof of Expectation Maximization in GMMs
* Generalized EM — Hidden Markov Models
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