

SNS COLLEGE OF TECHNOLOGY

Coimbatore – 35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Gaussian Mixture Models and Expectation Maximization

Gaussian Mixture Models

- Rather than identifying clusters by "nearest" centroids
- Fit a Set of k Gaussians to the data
- Maximum Likelihood over a mixture model

Gaussian Mixture Models and Expectation Maximization /Rajarajeswari.S/AP/AIML/SNSCT

GMM example

Gaussian Mixture Models and Expectation Maximization /Rajarajeswari.S/AP/AIML/SNSCT

Mixture Models

 Formally a Mixture Model is the weighted sum of a number of pdfs where the weights are determined by a distribution, π

$$p(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x) + \dots + \pi_k f_k(x)$$
where $\sum_{i=0}^{k} \pi_i = 1$

$$\pi(x) = \sum_{i=0}^{k} \pi_i f_i(x)$$

$$p(x) = \sum_{i=0}^{k} \pi_i f_i(x)$$

Gaussian Mixture Models

• GMM: the weighted sum of a number of Gaussians where the weights are determined by a distribution, π

$$p(x) = \pi_0 N(x|\mu_0, \Sigma_0) + \pi_1 N(x|\mu_1, \Sigma_1) + \ldots + \pi_k N(x|\mu_k, \Sigma_k)$$
where $\sum_{i=0}^k \pi_i = 1$

$$p(x) = \sum_{i=0}^{k} \pi_i N(x|\mu_k, \Sigma_k)$$

Graphical Models with unobserved variables

- What if you have variables in a Graphical model that are never observed?
 - Latent Variables
- Training latent variable models is an unsupervised learning application

Latent Variable HMMs

 We can cluster sequences using an HMM with unobserved state variables

 We will train latent variable models using Expectation Maximization

Expectation Maximization

- Both the training of GMMs and Graphical Models with latent variables can be accomplished using Expectation Maximization
 - Step 1: Expectation (E-step)
 - Evaluate the "responsibilities" of each cluster with the current parameters
 - Step 2: Maximization (M-step)
 - Re-estimate parameters using the existing "responsibilities"
- Similar to k-means training.

Latent Variable Representation

We can represent a GMM involving a latent variable

$$p(x) = \sum_{i=0}^{k} \pi_i N(x|\mu_k, \Sigma_k) = \sum_{z} p(z)p(x|z)$$

$$p(z) = \prod_{k=1}^{K} \pi_k^{z_k} \qquad p(x|z) = \prod_{k=1}^{K} N(x|\mu_k, \Sigma_k)^{z_k}$$

· What does this give us?

TODO: plate notation

GMM data and Latent variables

One last bit

- We have representations of the joint p(x,z) and the marginal, p(x)...
- The conditional of p(z|x) can be derived using Bayes rule.
 - The responsibility that a mixture component takes for explaining an observation x.

$$\tau(z_k) = p(z_k = 1|x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)}$$
$$= \frac{\pi_k N(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x|\mu_j, \Sigma_j)}$$

Maximum Likelihood over a GMM

As usual: Identify a likelihood function

$$\ln p(x|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \Sigma_k) \right\}$$

· And set partials to zero...

Maximum Likelihood of a GMM

· Optimization of means.

$$\ln p(x|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k) \right\}$$

$$\frac{\partial \ln p(x|\pi,\mu,\Sigma)}{\partial \mu_k} = \sum_{n=1}^N \frac{\pi_k N(x_n|\mu_k,\Sigma_k)}{\sum_j \pi_j N(x_n|\mu_j,\Sigma_j)} \Sigma_k^{-1}(x_k - \mu_k) = 0$$
$$= \sum_{n=1}^N \tau(z_{nk}) \Sigma_k^{-1}(x_k - \mu_k) = 0$$

$$\mu_{k} = \frac{\sum_{n=1}^{N} \tau(z_{nk}) x_{n}}{\sum_{n=1}^{N} \tau(z_{nk})}$$

Gaussian Mixture Models and Expectation Maximization /Rajarajeswari.S/AP/AIML/SNSCT

Maximum Likelihood of a GMM

· Optimization of covariance

$$\ln p(x|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \Sigma_k) \right\}$$

$$\Sigma_k = \frac{1}{\sum_{n=1}^N \tau(z_{nk})} \sum_{n=1}^N \tau(z_{nk}) (x_k - \mu_k) (x_k - \mu_k)^T$$

 Note the similarity to the regular MLE without responsibility terms.

Maximum Likelihood of a GMM

· Optimization of mixing term

$$\ln p(x|\pi,\mu,\Sigma) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1\right)$$

$$0 = \sum_{n=1}^{N} \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_j \pi_j N(x_n | \mu_j, \Sigma_j)} + \lambda$$

$$\pi_k = \frac{\sum_{n=1}^N \tau(z_n k)}{N}$$

MLE of a GMM

$$\mu_k = \frac{\sum_{n=1}^{N} \tau(z_{nk}) x_n}{N_k}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \tau(z_{nk}) (x_k - \mu_k) (x_k - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}$$

$$N_k = \sum_{n=1}^{N} \tau(z_n k)$$

EM for GMMs

- Initialize the parameters
 - Evaluate the log likelihood

Expectation-step: Evaluate the responsibilities

- · Maximization-step: Re-estimate Parameters
 - Evaluate the log likelihood
 - Check for convergence

EM for GMMs

E-step: Evaluate the Responsibilities

$$\tau(z_{nk}) = \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x_n | \mu_j, \Sigma_j)}$$

EM for GMMs

M-Step: Re-estimate Parameters

$$\mu_k^{new} = \frac{\sum_{n=1}^N \tau(z_{nk}) x_n}{N_k}$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \tau(z_{nk}) (x_k - \mu_k^{new}) (x_k - \mu_k^{new})^T$$

$$\pi_k^{new} = \frac{N_k}{N}$$

Visual example of EM

Potential Problems

Incorrect number of Mixture Components

Singularities

Incorrect Number of Gaussians

Incorrect Number of Gaussians

Singularities

- A minority of the data can have a disproportionate effect on the model likelihood.
- For example...

GMM example

Gaussian Mixture Models and Expectation Maximization /Rajarajeswari.S/AP/AIML/SNSCT

Singularities

- When a mixture component collapses on a given point, the mean becomes the point, and the variance goes to zero.
- Consider the likelihood function as the covariance goes to zero.

$$N(x_n|x_n, \sigma^2 I) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_i}$$

· The likelihood approaches infinity.

$$p(x) = \sum_{i=0}^{k} \pi_i N(x|\mu_k, \Sigma_k)$$

Relationship to K-means

- K-means makes hard decisions.
 - Each data point gets assigned to a single cluster.
- GMM/EM makes soft decisions.
 - Each data point can yield a posterior p(z|x)
- Soft K-means is a special case of EM.

Soft means as GMM/EM

- Assume equal covariance matrices for every mixture component:
- · Likelihood:

$$p(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi\epsilon)^{M/2}} \exp\left\{-\frac{1}{2\epsilon} ||x - \mu_k||^2\right\}$$

Responsibilities:

$$\tau(z_{nk}) = \frac{\pi_k \exp\left\{-\|x_n - \mu_k\|^2 / 2\epsilon\right\}}{\sum_j \pi_j \exp\left\{-\|x_n - \mu_j\|^2 / 2\epsilon\right\}}$$

 As epsilon approaches zero, the responsibility approaches unity.

Soft K-Means as GMM/EM

Overall Log likelihood as epsilon approaches zero:

$$\mathbb{E}_{z}[\ln p(X, Z | \mu, \Sigma, \pi)] \to -\frac{1}{2} \sum_{k=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_{n} - \mu_{k}||^{2} + const.$$

- The expectation of soft k-means is the intercluster variability
- Note: only the means are reestimated in Soft K-means.
 - The covariance matrices are all tied.

General form of EM

- Given a joint distribution over observed and latent variables: p(X, Z|θ)
- Want to maximize: $p(X|\theta)$
- 1. Initialize parameters θ^{old}
- 2. E Step: Evaluate:

$$p(Z|X, \theta^{old})$$

3. M-Step: Re-estimate parameters (based on expectation of complete-data log likelihood) $\theta^{new} = \operatorname{argmax}_{\theta} \sum p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$

4. Check for convergence of params or likelihood

Next Time

- Homework 4 due...
- Proof of Expectation Maximization in GMMs
- Generalized EM Hidden Markov Models