

SNS COLLEGE OF TECHNOLOGY

Coimbatore – 35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Probabilistic Models with Latent Variables

Density Estimation Problem

- Learning from unlabeled data $\{x_1, x_2, ..., x_N\}$
 - · Unsupervised learning, density estimation
- Empirical distribution typically has multiple modes

Density Estimation Problem

From http://courses.ee.sun.ac.za/Pattern_Recognition_813

From http://yulearning.blogspot.co.uk

Density Estimation Problem

- Conv. composition of unimodal pdf's: multimodal pdf $f(x) = \sum_k w_k f_k(x) \text{ where } \sum_k w_k = 1$
- Physical interpretation
 - Sub populations

Latent Variables

- Introduce new variable Z_i for each X_i
- · Latent / hidden: not observed in the data

- Probabilistic interpretation
 - Mixing weights: $w_k \equiv p(z_i = k)$
 - Mixture densities: $f_k(x) \equiv p(x|z_i = k)$

Generative Mixture Model

For
$$i = 1, ..., N$$

 $Z_i \sim iid \ Mult$
 $X_i \sim iid \ p(x|z_i)$

- $P(x_i, z_i) = p(z_i)p(x_i|z_i)$
- $P(x_i) = \sum_k p(x_i, z_i)$ recovers mixture distribution

Plate Notation

Tasks in a Mixture Model

Inference

$$P(z|x) = \prod_{i} P(z_i|x_i)$$

- Parameter Estimation
 - · Find parameters that e.g. maximize likelihood
 - Does not decouple according to classes
 - · Non convex, many local minima

Example: Gaussian Mixture Model

Model

For
$$i = 1, ..., N$$

 $Z_i \sim iid \ Mult(\pi)$
 $X_i \mid Z_i = k \sim iid \ N(x \mid \mu_k, \Sigma)$

Inference

$$P(z_i = k | x_i; \mu, \Sigma)$$

Soft-max function

Example: Gaussian Mixture Model

- Loglikelihood
 - Which training instance comes from which component?

$$l(\theta) = \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{k} p(z_i = k) p(x_i | z_i = k)$$

- No closed form solution for maximizing $l(\theta)$
- · Possibility 1: Gradient descent etc
- Possibility 2: Expectation Maximization

- Observation: Know values of $Z_i \Rightarrow$ easy to maximize
- Key idea: iterative updates
 - Given parameter estimates, "infer" all Z_i variables
 - Given inferred Z_i variables, maximize wrt parameters
- Questions
 - Does this converge?
 - What does this maximize?

Complete loglikelihood

$$l_c(\theta) = \sum_i \log p(x_i, z_i) = \sum_i \log p(z_i) p(x_i | z_i)$$

- Problem: z_i not known
- Possible solution: Replace w/ conditional expectation
- Expected complete loglikelihood

$$Q(\theta, \theta_{old}) = E\left[\sum_{i} \log p(x_i, z_i)\right]$$

Wrt $p(z|x, \theta_{old})$ where θ_{old} are the current parameters

$$Q(\theta, \theta_{old}) = E\left[\sum_{i} \log p(x_i, z_i)\right]$$

$$= \sum_{i} \sum_{k} E[I(z_i = k)] \log[\pi_k p(x_i | \theta_k)]$$

$$= \sum_{i} \sum_{k} p(z_i = k | x_i, \theta_{old}) \log[\pi_k p(x_i | \theta_k)]$$

$$= \sum_{i} \sum_{k} \gamma_{ik} \log \pi_k + \sum_{i} \sum_{k} \gamma_{ik} \log p(x_i | \theta_k)$$

$$= p(z_i = k | x_i, \theta_{old})$$

Where $\gamma_{ik} = p(z_i = k | x_i, \theta_{old})$

Compare with likelihood for generative classifier

Expectation Step

• Update γ_{ik} based on current parameters

$$\gamma_{ik} = \frac{\pi_k p(x_i | \theta_{old,k})}{\sum_k \pi_k p(x_i | \theta_{old,k})}$$

Maximization Step

- Maximize $Q(\theta, \theta_{old})$ wrt parameters
- · Overall algorithm
 - · Initialize all latent variables
 - Iterate until convergence
 - M Step
 - E Step

Example: EM for GMM

- E Step remains the step for all mixture models
- M Step

•
$$\pi_k = \frac{\sum_i \gamma_{ik}}{N} = \frac{\gamma_k}{N}$$
• $\mu_k = \frac{\sum_i \gamma_{ik} x_i}{\gamma_k}$

•
$$\mu_k = \frac{\sum_i \gamma_{ik} x_i}{\gamma_k}$$

- $\Sigma = ?$
- Compare with generative classifier

Analysis of EM Algorithm

- Expected complete LL is a lower bound on LL
- EM iteratively maximizes this lower bound
- Converges to a local maximum of the loglikelihood

Bayesian / MAP Estimation

- EM overfits
- Possible to perform MAP instead of MLE in M-step
- EM is partially Bayesian
 - Posterior distribution over latent variables
 - Point estimate over parameters
- Fully Bayesian approach is called Variational Bayes

(Lloyd's) K Means Algorithm

- Hard EM for Gaussian Mixture Model
 - Point estimate of parameters (as usual)
 - Point estimate of latent variables
 - Spherical Gaussian mixture components

$$z_i^* = \arg\max_k p(z_i = k|x_i, \theta) = \arg\min_k \left| |x_i - \mu_k| \right|_2^2$$
 Where $\mu_k = \frac{\sum_{i:z_i = k} x_i}{N}$

Most popular "hard" clustering algorithm

K Means Problem

• Given $\{x_i\}$, find k "means" $(\mu_1^*, ..., \mu_k^*)$ and data assignments $(z_1^*, ..., z_N^*)$ such that

$$(\mu^*, z^*) = \arg\min_{\mu, z} \sum_{i} ||x_i - \mu z_i||_2^2$$

• Note: z_i is k-dimensional binary vector

Model selection: Choosing K for GMM

- Cross validation
 - Plot likelihood on training set and validation set for increasing values of k
 - Likelihood on training set keeps improving
 - Likelihood on validation set drops after "optimal" k
- Does not work for k-means! Why?

Principal Component Analysis: Motivation

Dimensionality reduction

- Reduces #parameters to estimate
- Data often resides in much lower dimension, e.g., on a line in a 3D space
- Provides "understanding"
- Mixture models very restricted
 - Latent variables restricted to small discrete set
 - Can we "relax" the latent variable?

Classical PCA: Motivation

Revisit K-means

$$\min_{W,Z} J(W,Z) = |X - WZ^T|^2_F$$

- W: matrix containing means
- Z: matrix containing cluster membership vectors
- How can we relax Z and W?

Classical PCA: Problem

$$\min_{W,Z} J(W,Z) = ||X - WZ^T||^2_F$$

- $X : D \times N$
- Arbitrary Z of size $N \times L$,
- Orthonormal W of size $D \times L$

Classical PCA: Optimal Solution

- Empirical covariance matrix $\hat{\Sigma} = \frac{1}{N} \sum_{i} x_{i} x_{i}^{T}$
 - · Scaled and centered data
- $\widehat{W} = V_L$ where V_L contains L Eigen vectors for the L largest Eigen values of $\widehat{\Sigma}$
- $\widehat{z_i} = \widehat{W}^T x_i$
- Alternative solution via Singular Value Decomposition (SVD)
- W contains the "principal components" that capture the largest variance in the data

Probabilistic PCA

Generative model

$$P(z_i) = N(z_i | \mu_0, \Sigma_0)$$

 $P(x_i | z_i) = N(x_i | Wz_i + \mu, \Psi)$
 Ψ forced to be diagonal

- Latent linear models
 - Factor Analysis
 - Special Case: PCA with $\Psi = \sigma^2 I$

Visualization of Generative Process

From Bishop, PRML

Relationship with Gaussian Density

- $Cov[x] = WW^T + \Psi$
- Why does Ψ need to be restricted?
- Intermediate low rank parameterization of Gaussian covariance matrix between full rank and diagonal
 - Compare #parameters

EM for PCA: Rod and Springs

Advantages of EM

- Simpler than gradient methods w/ constraints
- Handles missing data
- · Easy path for handling more complex models

Not always the fastest method

Summary of Latent Variable Models

- Learning from unlabeled data
- Latent variables
 - Discrete: Clustering / Mixture models; GMM
 - · Continuous: Dimensionality reduction; PCA
- Summary / "Understanding" of data
- Expectation Maximization Algorithm