

SNS College of Technology Coimbatore - 35

19BAZ782 – Analytics for Everyone

Unit V – Predictive Analytics II

Topic...Guess...???

Presented by

Dr.P.Krishnaveni Design Thinker

 st
 Indian

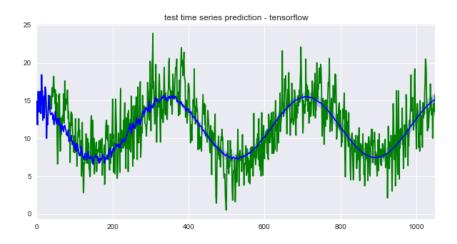
 Institution
 Design

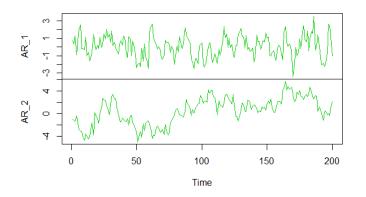
 to
 Thinking

 Implement
 Curriculum

 Redesigning
 Common

 Towards
 Excellence


- Accuracy
- Training and test sets
- Forecasting
- Training and test sets
- Error
- Methods



Guess the topic...???

AR Model Simulated Data

Regression

- Auto correlation: Correlation Auto of variable observed at 2 different point of time [Y_t & Y_{t-1}, Y_t & Y_{t-3}]
- K-period plot of autocorrelation is called as Autocorrelation Function (ACF) or Correlogram

Auto-correlation of lag k, ρ_k , is given by:

$$\rho_{k} = \frac{\sum_{t=k+1}^{n} \left(Y_{t-k} - \bar{Y} \right) \left(Y_{t} - \bar{Y} \right)}{\sum_{t=1}^{n} (Y_{t} - \bar{Y})^{2}}$$

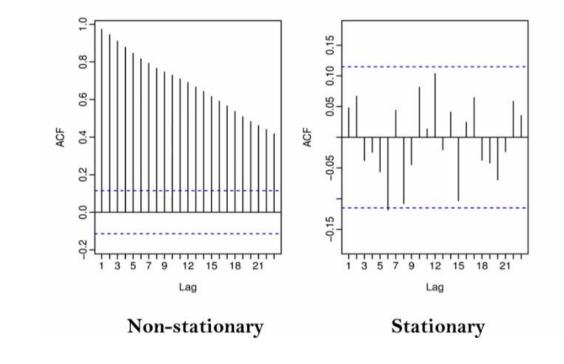
n = total number of observations

- Auto correlation of lag k is auto – correlation between Y_t and _{Yt+k}
- To test whether the autocorrelation at lag k is significantly different from 0...
- For any k, reject Ho if $|\rho_k| > 1.96/\sqrt{n}$.

 $H_{o}: \rho_{k} = 0$ $H_{A}: \rho_{k} \neq 0$

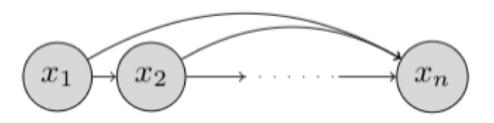
A time series is stationary if,

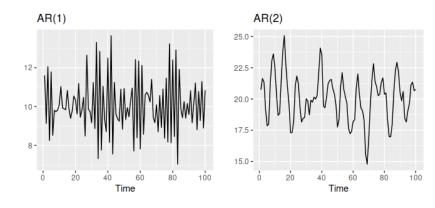
- Mean is constant
- Variance is constant
- The covariance between two time periods (Y_t) and (Y_{t+k}) depends only on the lag k not on the time t
- Assume that the time series is stationary before applying forecasting models



How to identify...?

18.03.2024 Dr.P.Krishnaveni, Prof/MBA/SNSCT – Predictive Analytics II


8 / 15

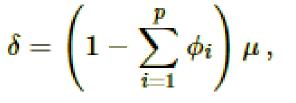

- Auto Regressive model
 Similarities between past and present data
 Auto correlation between data
- Regression of Y on itself

AR Model...Cont...

- Relies on past data to predict the current / future
- AR(p): "p" is called the order of the model and represents the number of lagged values
- $X_t = C + \phi_1 X_{t-1} + \epsilon_t$
- Φ Range from -1 to +1
- ϵ_t residual
- These residuals are usually unpredictable differences

18.03.2024 Dr.P.Krishnaveni, Prof/MBA/SNSCT – Predictive Analytics II

10 / 15



11/15

AR Model Lags

- How many lags are needed [Past values]
- More in number More complex model – More accurate results
- Process Mean



Difference between Regression and AR Model...

- RegressionAuto regressive Model
- AR Model lags

- https://online.stat.psu.edu/stat501/lesson/14/1 4.1
- <u>https://www.statisticshowto.com/autoregressi</u> <u>ve-model/</u>
- https://365datascience.com/autoregressivemodel/

🖾 Reach Us

SNSINSTITUTIONS

SNSINSTITUTIONS

SNSINSTITUTIONS

