

SNS COLLEGE OF TECHNOLOGY

Vazhiamyampalayam, Coimbatore-35

(An Autonomous institution)

Accredited by NBA-AICTE and Re-Accredited by NAAC-UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CHEMISTRY

COURSE NAME: 23CHT102- CHEMISTRY OF ENGINEERING MATERIALS

I YEAR / I SEMESTER

UNIT: 5. ALLOYS AND ENGINEERING MATERIALS

TOPIC: 1. PORTLAND CEMENT

What do you understand from these images?

- **Structural deficiency due to construction defects.**
- ❖ Damage due to fire, floods, earthquakes, cyclones etc.
- ❖ Damage due to chemical attack.
- ❖ Damage due to marine environments.
- ❖ Damage due to abrasion of granular materials.
- * Movement of concrete due to physical characteristics.

How will you improve the quality of cement

Why concrete gets affected?

- * Chemical attack can occur because concrete is alkaline and chemically reactive.
- * It can be attacked by acids; some alkalis; numerous salt solutions; and organics such as fermenting liquids, sugars, and animal oils, especially if they contain free acids. Seawater will attack concrete.

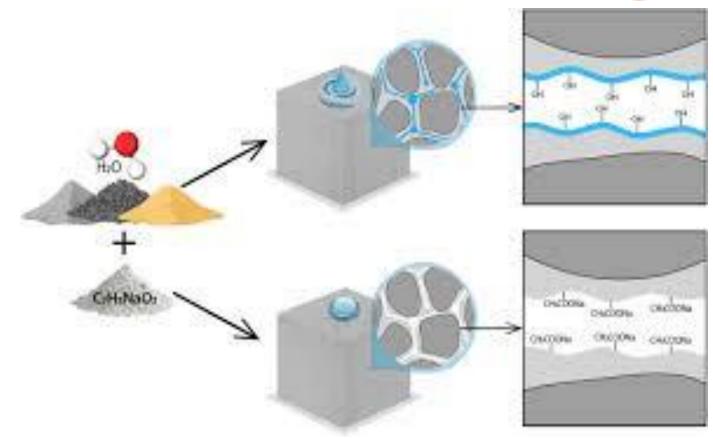
Cement:

Cement is the mixture of calcareous, siliceous, argillaceous and other substances. Cement is used as a binding material in mortar, concrete, etc.

Chemical Composition of Cement

Oxide	Percent content
CaO (Lime)	60-67%
SiO ₂ (Silica)	17-25%
Al2O3 (Alumina)	5-8%
Fe2O3 (Iron oxide)	0.5-6%
MgO (Magnesia)	0.1-4%
Alkalies(K2O,Na2O)	0.2-1.0%
SO3 (Sulphur trioxide)	1-3%

TYPES OF CEMENT:


- Ordinary Portland Cement
- 2. Rapid Hardening Cement (or) High Early Strength cement
- 3. Extra Rapid Hardening Cement
- 4. Sulphate Resisting Cement
- Quick Setting Cement
- 6. Low Heat Cement
- 7. Portland Pozzolana Cement
- 8. Portland Slag Cement
- 9. High Alumina Cement
- 10. Air Entraining Cement
- 11. Supersulphated Cement
- 12. Masonry Cement
- 13. Expansive Cement
- 14. Colored Cement
- 15. White Cement

PORTLAND CEMENT

- Portland cement is made up of four main compounds: tricalcium silicate (3CaO · SiO₂), dicalcium silicate (2CaO · SiO₂), tricalcium aluminate (3CaO and a tetra-calcium Al_2O_3), aluminoferrite (4CaO · Al₂O₃Fe₂O₃).
- Portland cement gets its strength by the process known as hydration.

Hydration of cement

PORTLAND CEMENT COMPOSITION

Constituent

Ordinary Portland cement % by Weight

Lime (CaO)	64.64
Silica (SiO ₂)	21.28
Alumina (Al ₂ O ₃)	5.60
Iron Oxide (Fe ₂ O ₃)	3.36
Magnesia (MgO)	2.06
Sulphur Trioxide (SO ₃)	2.14
N_2O	0.05
Loss of Ignition	0.64
Lime saturation factor	0.92
C3S	52.82
C2S	21.45
C3A	9.16
C4AF	10.2

Functions of Cement Manufacturing Constituents

(i) <u>Lime (CaO):</u>

- 1. Lime forms nearly two-third (2/3) of the cement. Therefore sufficient quantity of the lime must be in the raw materials for the manufacturing of cement.
- 2. Its proportion has an important effect on the cement. Sufficient quantity of lime forms dicalcium silicate and tri-calcium silicate in the manufacturing of cement.
- 3. Lime in excess, causes the cement to expand and disintegrate.

(ii) Silica (SiO2):

- 1. The quantity of silica should be enough to form di-calcium silicate and tri-calcium silicate in the manufacturing of cement.
- 2. Silica gives strength to the cement.
- 3. Silica in excess causes the cement to set slowly.

(iii) Alumina (Al2O3):

- 1. Alumina supports to set quickly to the cement.
- 2. Lowers the clinkering temperature.
- 3. Alumina in excess, reduces the strength of the cement.

(iv) Iron Oxide (Fe2O3):

Iron oxide gives colour to the cement.

(v) Magnesia (MgO):

- 1.It also helps in giving colour to the cement.
- 2.Magnesium in excess makes the cement unsound.

(vi) <u>Calcium Sulphate (or) Gypsum (CaSO4)</u>:

At the final stage of manufacturing, gypsum is added to increase the setting of cement.

PROPERTIES OF COMPONENTS

Tricalcium aluminate, C₃A:-

It liberates a lot of heat during the early stages of hydration, but has little strength contribution.

Dicalcium silicate, C₂S:

C₂S hydrates and hardens slowly. It is largely responsible for strength gain after one week.

Ferrite, C₄AF:

This is a fluxing agent which reduces the melting temperature of the raw materials in the kiln (from 3,000° F to 2,600° F).

ASSESSMENT

- 1. Mention the components of Portland cement?
- 2. What is meant by Hydration of cement?
- 3. What are the advantages of Portland cement over other cement?

SUMMARY

REFERENCES

1. Wiley, "Engineering Chemistry", John Wiley & Sins.InC, USA (2014]

