

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35 DEPARTMENT OF MATHEMATICS

Properties:

Change of scale proporty!

If
$$L \S f(t)^2 = F(s)$$
, then $L [f(at)] = \frac{1}{4} F(s|a)$

Proof

Put at =
$$x \Rightarrow t = x | a$$

L [f(at)] =
$$\int_{0}^{\infty} e^{-s(x|a)} f(x) dx$$
.

$$= \frac{1}{a} \int e^{-s(x|a)} f(x) dx$$

$$= \frac{1}{a} \int e^{-s(x|a)} f(x) dx$$

i)
$$L\left[e^{at}\beta(t)\right] = \left\{L\left[\beta(t)\right]\right\}_{S \to S - a} = F(S + a)$$
ii) $L\left[e^{at}\beta(t)\right] = \left\{L\left[\beta(t)\right]\right\}_{S \to S - a} = F(S - a)$
iii) $L\left[e^{at}\beta(t)\right] = \left\{L\left[\beta(t)\right]\right\}_{S \to S - a} = F(S - a)$

$$\sum_{i} \left[e^{at} f(t) \right] = \left\{ \left[f(t) \right] \right\}_{s \to s-a} = F(s-a)$$

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35 DEPARTMENT OF MATHEMATICS

$$= \int_{0}^{\infty} e^{-(s+a)b} \int_{0}^{\infty} f(s)dt$$

$$= F(s+a)$$

$$= \int_{0}^{\infty} e^{-st} \int_{0}^{\infty} e^{-st} \int_{0}^{\infty} dt$$

$$= \int_{0}^{\infty} e^{-(s-a)b} \int_{0}^{\infty} e^{-(s-a)b}$$

$$= e^{as} \int_{0}^{\infty} e^{-us} f(u) du$$

$$= e^{as} \int_{0}^{\infty} e^{-st} f(t) dt \qquad \text{Replace } u \to t$$

$$L[gut)] = e^{as} F(s)$$